Unsteady axisymmetric flow and heat transfer of a hybrid nanofluid over a permeable stretching/shrinking disc

被引:23
|
作者
Khashi'ie, Najiyah Safwa [1 ]
Arifin, Norihan M. [2 ]
Pop, Ioan [3 ]
机构
[1] Univ Teknikal Malaysia Melaka, Fak Teknol Kejuruteraan Mekanikal Dan Pembuatan, Melaka, Malaysia
[2] Univ Putra Malaysia, Dept Math, Seri Kembangan, Selangor, Malaysia
[3] Univ Babes Bolyai, Fac Matemat & Informat, Cluj Napoca, Romania
关键词
Stability analysis; Unsteady flow; Dual solutions; Hybrid nanofluid; Permeable disc; STAGNATION-POINT FLOW; MHD FLOW; SHEET; CONVECTION; PLATE;
D O I
10.1108/HFF-07-2020-0421
中图分类号
O414.1 [热力学];
学科分类号
摘要
Purpose This study aims to analyze the unsteady flow of hybrid Cu-Al2O3/water nanofluid over a permeable stretching/shrinking disc. The analysis of flow stability is also purposed because of the non-uniqueness of solutions. Design/methodology/approach The reduced differential equations (similarity) are solved numerically using the aid of bvp4c solver (Matlab). Two types of thermophysical correlations for hybrid nanofluid (Type 1 and 2) are adopted for the comparison results. Using correlation Type 1, the heat transfer and flow analysis including the profiles (velocity and temperature) are presented in the figures and tables with different values control parameters. Three sets of hybrid nanofluid are analyzed: Set 1 (1% Al2O3 + 1% Cu), Set 2 (0.5% Al2O3 + 1% Cu) and Set 3 (1% Al2O3 + 0.5% Cu). Findings The comparison of numerical values between present (Types 1 and 2 correlations) and previous (Type 2 correlations) results are in a good compliance with approximate percent relative error. The appearance of two solutions is noticed when the suction parameter is considered and the unsteady parameter is less than 0 (decelerating flow) for both stretching and shrinking disc while only one solution is possible for steady flow. The hybrid nanofluid in Set 1 can delay the separation of boundary layer but the hybrid nanofluid in Set 3 has the greatest heat transfer rate. Moreover, the inclusion of wall mass suction for stretching case can generate a significant increment of heat transfer rate approximately 90% for all fluids (water, single and hybrid nanofluids). Originality/value The present findings are novel and can be a reference point to other researchers to further analyze the heat transfer performance and stability of the working fluids.
引用
收藏
页码:2005 / 2021
页数:17
相关论文
共 50 条
  • [1] Hybrid nanofluid flow and heat transfer over a nonlinear permeable stretching/shrinking surface
    Waini, Iskandar
    Ishak, Anuar
    Pop, Ioan
    INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2019, 29 (09) : 3110 - 3127
  • [2] Hybrid nanofluid flow and heat transfer over a permeable biaxial stretching/shrinking sheet
    Waini, Iskandar
    Ishak, Anuar
    Pop, Ioan
    INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2020, 30 (07) : 3497 - 3513
  • [3] Unsteady hybrid nanofluid flow over a radially permeable shrinking/stretching surface
    Khan, Umair
    Waini, Iskandar
    Ishak, Anuar
    Pop, Ioan
    JOURNAL OF MOLECULAR LIQUIDS, 2021, 331
  • [4] Unsteady boundary-layer flow and heat transfer of a nanofluid over a permeable stretching/shrinking sheet
    Bachok, Norfifah
    Ishak, Anuar
    Pop, Ioan
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2012, 55 (7-8) : 2102 - 2109
  • [5] Flow and heat transfer over a permeable biaxial stretching/shrinking sheet in a nanofluid
    Teodor Groşan
    Ioan Pop
    Neural Computing and Applications, 2020, 32 : 4575 - 4582
  • [6] Flow and heat transfer over a permeable biaxial stretching/shrinking sheet in a nanofluid
    Grosan, Teodor
    Pop, Ioan
    NEURAL COMPUTING & APPLICATIONS, 2020, 32 (09): : 4575 - 4582
  • [7] Unsteady flow and heat transfer past a stretching/shrinking sheet in a hybrid nanofluid
    Waini, Iskandar
    Ishak, Anuar
    Pop, Ioan
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2019, 136 : 288 - 297
  • [8] Flow and heat transfer of a second-grade hybrid nanofluid over a permeable stretching/shrinking sheet
    Nepal Chandra Roy
    Ioan Pop
    The European Physical Journal Plus, 135
  • [9] Flow and heat transfer of a second-grade hybrid nanofluid over a permeable stretching/shrinking sheet
    Roy, Nepal Chandra
    Pop, Ioan
    EUROPEAN PHYSICAL JOURNAL PLUS, 2020, 135 (09):
  • [10] MHD hybrid nanofluid flow with convective heat transfer over a permeable stretching/shrinking surface with radiation
    Wahid, Nur Syahirah
    Arifin, Norihan Md
    Khashi'ie, Najiyah Safwa
    Pop, Ioan
    Bachok, Norfifah
    Hafidzuddin, Ezad Hafidz
    INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2022, 32 (05) : 1706 - 1727