Beyond 2D: effects of photobiomodulation in 3D tissue-like systems

被引:13
|
作者
Bikmulina, Polina Y. [1 ]
Kosheleva, Nastasia, V [2 ,3 ,4 ]
Shpichka, Anastasia, I [1 ,5 ]
Efremov, Yuri M. [1 ]
Yusupov, Vladimir, I [6 ]
Timashev, Peter S. [1 ,5 ,6 ,7 ]
Rochev, Yury A. [1 ,8 ]
机构
[1] Sechenov First Moscow State Med Univ, Inst Regenerat Med, Moscow, Russia
[2] Lomonosov Moscow State Univ, Fac Biol, Moscow, Russia
[3] FSBSI Inst Gen Pathol & Pathophysiol, Moscow, Russia
[4] Minist Healthcare Russia, FSBEI FPE Russian Med Acad Continuous Profess Edu, Moscow, Russia
[5] Lomonosov Moscow State Univ, Chem Dept, Moscow, Russia
[6] FSRC Crystallog & Photon RAS, Inst Photon Technol, Moscow, Russia
[7] NN Semenov Inst Chem Phys, Dept Polymers & Composites, Moscow, Russia
[8] Natl Univ Ireland, Natl Ctr Biomed Engn Sci, Galway, Ireland
关键词
photobiomodulation; tissue engineering; hydrogel; fibrin; mesenchymal stromal cells; regenerative medicine; MESENCHYMAL STEM-CELLS; LEVEL LASER THERAPY; FIBRIN GELS; CULTURE; MODEL; SCAFFOLDS; HEALTHY; KINASE;
D O I
10.1117/1.JBO.25.4.048001
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Significance: Currently, various scaffolds with immobilized cells are widely used in tissue engineering and regenerative medicine. However, the physiological activity and cell viability in such constructs might be impaired due to a lack of oxygen and nutrients. Photobiomodulation (PBM) is a promising method of preconditioning cells to increase their metabolic activity and to activate proliferation or differentiation. Aim: Investigation of the potential of PBM for stimulation of cell activities in hydrogels. Approach: Mesenchymal stromal cells (MSCs) isolated from human gingival mucosa were encapsulated in modified fibrin hydrogels with different thicknesses and concentrations. Constructs with cells were subjected to a single-time exposure to red (630 nm) and near-infrared (IR) (840 nm) low-intensity irradiation. After 3 days of cultivation, the viability and physiological activity of the cells were analyzed using confocal microscopy and a set of classical tests for cytotoxicity. Results: The cell viability in fibrin hydrogels depended both on the thickness of the hydrogels and the concentration of gel-forming proteins. The PBM was able to improve cell viability in hydrogels. The most pronounced effect was achieved with near-IR irradiation at the 840-nm wavelength. Conclusions: PBM using near-IR light can be applied for stimulation of MSCs metabolism and proliferation in hydrogel-based constructs with thicknesses up to 3 mm. (C) The Authors. Published by SPIE under a Creative Commons Attribution 4.0 Unported License.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] TAILORING PLLA SCAFFOLDS FOR TISSUE ENGINEERING APPLICATIONS: MORPHOLOGIES FOR 2D AND 3D CELL CULTURES
    Pavia, F. Carfi
    La Carrubba, V.
    Brucato, V.
    Ghersi, G.
    INTERNATIONAL JOURNAL OF MATERIAL FORMING, 2009, 2 : 717 - 720
  • [32] 2D and 3D electrospinning technologies for the fabrication of nanofibrous scaffolds for skin tissue engineering: A review
    Keirouz, Antonios
    Chung, Michael
    Kwon, Jaehoon
    Fortunato, Giuseppino
    Radacsi, Norbert
    WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY, 2020, 12 (04)
  • [33] Computing 3D saliency from a 2D image
    Ramenahalli, Sudarshan
    Niebur, Ernst
    2013 47TH ANNUAL CONFERENCE ON INFORMATION SCIENCES AND SYSTEMS (CISS), 2013,
  • [34] Use of 2D and 3D cell cultures in dermatology
    Zeitvogel, J.
    Werfel, T.
    HAUTARZT, 2020, 71 (02): : 91 - 100
  • [35] Diffraction-based technology for the monitoring of contraction dynamics in 3D and 2D tissue models
    Le Harzic, Ronan
    Meiser, Ina
    Neubauer, Julia C.
    Riemann, Iris
    Schiffer, Michael
    Stracke, Frank
    Zimmermann, Heiko
    BIOMEDICAL OPTICS EXPRESS, 2020, 11 (02): : 517 - 532
  • [36] Increasing hydrogel complexity from 2D towards 3D towards intestinal tissue engineering
    Szabo, Anna
    De Vlieghere, Elly
    Costa, Pedro F.
    Geurs, Indi
    Dewettinck, Koen
    Van Vlierberghe, Sandra
    GIANT, 2023, 16
  • [37] Cell-Laden 3D Printed GelMA/HAp and THA Hydrogel Bioinks: Development of Osteochondral Tissue-like Bioinks
    Jahangir, Shahrbanoo
    Vecstaudza, Jana
    Augurio, Adriana
    Canciani, Elena
    Stipniece, Liga
    Locs, Janis
    Alini, Mauro
    Serra, Tiziano
    MATERIALS, 2023, 16 (22)
  • [38] Inkjet 3D bioprinting for tissue engineering and pharmaceutics
    Zhao, Deng-ke
    Xu, He-qi
    Yin, Jun
    Yang, Hua-yong
    JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE A, 2022, 23 (12): : 955 - 973
  • [39] Is 3D Printing Promising for Osteochondral Tissue Regeneration?
    Ege, Duygu
    Hasirci, Vasif
    ACS APPLIED BIO MATERIALS, 2023, 6 (04) : 1431 - 1444
  • [40] The Applications of 3D Printing for Craniofacial Tissue Engineering
    Tao, Owen
    Kort-Mascort, Jacqueline
    Lin, Yi
    Pham, Hieu M.
    Charbonneau, Andre M.
    ElKashty, Osama A.
    Kinsella, Joseph M.
    Tran, Simon D.
    MICROMACHINES, 2019, 10 (07)