Higher-order Kato class potentials for Schrodinger operators

被引:25
|
作者
Zheng, Quan [1 ]
Yao, Xiaohua [2 ]
机构
[1] Huazhong Univ Sci & Technol, Dept Math, Wuhan 430074, Peoples R China
[2] Huazhong Normal Univ, Dept Math, Wuhan 430079, Peoples R China
基金
美国国家科学基金会;
关键词
ABSORPTION SEMIGROUPS; EQUATIONS; SPECTRUM;
D O I
10.1112/blms/bdn125
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is concerned with characterizations and approximation properties of higher-order Kato class K(alpha)(R(n)) introduced by Davies and Hinz, as well as the applications to higher-order Schrodinger operators with such potentials.
引用
收藏
页码:293 / 301
页数:9
相关论文
共 50 条
  • [41] Semiclassical solutions for a class of Schrodinger system with magnetic potentials
    Zhang, Jian
    Tang, Xianhua
    Zhang, Wen
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 414 (01) : 357 - 371
  • [42] Hybrid structures of the rogue waves and breather-like waves for the higher-order coupled nonlinear Schrodinger equations
    Zhang, Xi
    Wang, Yu-Feng
    Yang, Sheng-Xiong
    CHAOS SOLITONS & FRACTALS, 2024, 180
  • [43] On a Class of Higher-Order Fully Decoupled Schemes for the Cahn-Hilliard-Navier-Stokes System
    Li, Xiaoli
    Liu, Zhengguang
    Shen, Jie
    Zheng, Nan
    JOURNAL OF SCIENTIFIC COMPUTING, 2025, 103 (01)
  • [44] Asymptotics of the Weyl function for Schrodinger operators with measure-valued potentials
    Luger, Annemarie
    Teschl, Gerald
    Woehrer, Tobias
    MONATSHEFTE FUR MATHEMATIK, 2016, 179 (04): : 603 - 613
  • [45] Resolvent estimates for one-dimensional Schrodinger operators with complex potentials
    Arnal, Antonio
    Siegl, Petr
    JOURNAL OF FUNCTIONAL ANALYSIS, 2023, 284 (09)
  • [46] Vector bright soliton behaviors of the coupled higher-order nonlinear Schrodinger system in the birefringent or two-mode fiber
    Liu, Lei
    Tian, Bo
    Xie, Xi-Yang
    Guan, Yue-Yang
    CHAOS, 2017, 27 (01)
  • [47] A higher-order porous thermoelastic problem with microtemperatures
    Fernandez, J. R.
    Quintanilla, R.
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2023, 44 (11) : 1911 - 1926
  • [48] PERTURBATIVE HAMILTONIAN CONSTRAINTS FOR HIGHER-ORDER THEORIES
    Martinez, S. A.
    Montemayor, R.
    Urrutia, L. F.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2011, 26 (26): : 4661 - 4686
  • [49] Higher-order fractional Green and Gauss formulas
    Cheng, Jinfa
    Dai, Weizhong
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 462 (01) : 157 - 171
  • [50] Invariant Higher-Order Variational Problems II
    Gay-Balmaz, Francois
    Holm, Darryl D.
    Meier, David M.
    Ratiu, Tudor S.
    Vialard, Francois-Xavier
    JOURNAL OF NONLINEAR SCIENCE, 2012, 22 (04) : 553 - 597