Higher-order Kato class potentials for Schrodinger operators

被引:25
|
作者
Zheng, Quan [1 ]
Yao, Xiaohua [2 ]
机构
[1] Huazhong Univ Sci & Technol, Dept Math, Wuhan 430074, Peoples R China
[2] Huazhong Normal Univ, Dept Math, Wuhan 430079, Peoples R China
基金
美国国家科学基金会;
关键词
ABSORPTION SEMIGROUPS; EQUATIONS; SPECTRUM;
D O I
10.1112/blms/bdn125
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is concerned with characterizations and approximation properties of higher-order Kato class K(alpha)(R(n)) introduced by Davies and Hinz, as well as the applications to higher-order Schrodinger operators with such potentials.
引用
收藏
页码:293 / 301
页数:9
相关论文
共 50 条
  • [31] DIVERGING EIGENVALUES IN DOMAIN TRUNCATIONS OF SCHRODINGER OPERATORS WITH COMPLEX POTENTIALS
    Semoradova, Iveta
    Siegl, Petr
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2022, 54 (04) : 5064 - 5101
  • [32] Schrodinger Operators on a Half-Line with Inverse Square Potentials
    Kovarik, H.
    Truc, F.
    MATHEMATICAL MODELLING OF NATURAL PHENOMENA, 2014, 9 (05) : 170 - 176
  • [33] Ballistic transport for Schrodinger operators with quasi-periodic potentials
    Karpeshina, Yulia
    Parnovski, Leonid
    Shterenberg, Roman
    JOURNAL OF MATHEMATICAL PHYSICS, 2021, 62 (05)
  • [34] Invariant Higher-Order Variational Problems
    Gay-Balmaz, Francois
    Holm, Darryl D.
    Meier, David M.
    Ratiu, Tudor S.
    Vialard, Francois-Xavier
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2012, 309 (02) : 413 - 458
  • [35] Eigenvalue Asymptotics for Confining Magnetic Schrodinger Operators with Complex Potentials
    Morin, Leo
    Raymond, Nicolas
    San Vu Ngc
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2023, 2023 (17) : 14547 - 14593
  • [36] Schrodinger operators with locally integrable potentials on infinite metric graphs
    Akduman, Setenay
    Pankov, Alexander
    APPLICABLE ANALYSIS, 2017, 96 (12) : 2149 - 2161
  • [37] HIGHER-ORDER MODELS IN PHASE SEPARATION
    Cherfils, Laurence
    Miranville, Alain
    Peng, Shuiran
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2017, 7 (01): : 39 - 56
  • [38] Differentiate data by higher-order structures
    Nie, Chun-Xiao
    INFORMATION SCIENCES, 2024, 655
  • [39] Generalized higher-order Freud weights
    Clarkson, Peter A.
    Jordaan, Kerstin
    Loureiro, Ana
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2023, 479 (2272):
  • [40] Lagrangian for Circuits with Higher-Order Elements
    Biolek, Zdenek
    Biolek, Dalibor
    Biolkova, Viera
    ENTROPY, 2019, 21 (11)