Higher-order Kato class potentials for Schrodinger operators

被引:25
|
作者
Zheng, Quan [1 ]
Yao, Xiaohua [2 ]
机构
[1] Huazhong Univ Sci & Technol, Dept Math, Wuhan 430074, Peoples R China
[2] Huazhong Normal Univ, Dept Math, Wuhan 430079, Peoples R China
基金
美国国家科学基金会;
关键词
ABSORPTION SEMIGROUPS; EQUATIONS; SPECTRUM;
D O I
10.1112/blms/bdn125
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is concerned with characterizations and approximation properties of higher-order Kato class K(alpha)(R(n)) introduced by Davies and Hinz, as well as the applications to higher-order Schrodinger operators with such potentials.
引用
收藏
页码:293 / 301
页数:9
相关论文
共 50 条
  • [21] A Study on Solutions for a Class of Higher-Order System of Singular Boundary Value Problem
    Pandit, Biswajit
    Verma, Amit K.
    Agarwal, Ravi P.
    SYMMETRY-BASEL, 2023, 15 (09):
  • [22] Spectral theory of higher order difference operators
    Behncke, Horst
    Nyamwala, Fredrick Oluoch
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2013, 19 (12) : 1983 - 2028
  • [23] Dynamical Bounds for Quasiperiodic Schrodinger Operators with Rough Potentials
    Jitomirskaya, Svetlana
    Mavi, Rajinder
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2017, 2017 (01) : 96 - 120
  • [24] Higher-Order Infinitesimal Robustness
    La Vecchia, Davide
    Ronchetti, Elvezio
    Trojani, Fabio
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2012, 107 (500) : 1546 - 1557
  • [25] Pointwise Weyl laws for Schrodinger operators with singular potentials
    Huang, Xiaoqi
    Zhang, Cheng
    ADVANCES IN MATHEMATICS, 2022, 410
  • [26] ELLIPTIC SYSTEMS INVOLVING SCHRODINGER OPERATORS WITH VANISHING POTENTIALS
    Arratia, Juan
    Pereira, Denilson
    Ubilla, Pedro
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2022, 42 (03) : 1369 - 1401
  • [27] Weyl formulae for Schrodinger operators with critically singular potentials
    Huang, Xiaoqi
    Sogge, Christopher D.
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2021, 46 (11) : 2088 - 2133
  • [28] Weak coupling limit for Schrodinger-type operators with degenerate kinetic energy for a large class of potentials
    Cuenin, Jean-Claude
    Merz, Konstantin
    LETTERS IN MATHEMATICAL PHYSICS, 2021, 111 (02)
  • [29] Measure zero spectrum of a class of Schrodinger operators
    Liu, QH
    Tan, B
    Wen, ZX
    Wu, J
    JOURNAL OF STATISTICAL PHYSICS, 2002, 106 (3-4) : 681 - 691
  • [30] Potentials for non-local Schrodinger operators with zero eigenvalues
    Ascione, Giacomo
    Lorinczi, Jozsef
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 317 : 264 - 364