Higher-order Kato class potentials for Schrodinger operators

被引:25
作者
Zheng, Quan [1 ]
Yao, Xiaohua [2 ]
机构
[1] Huazhong Univ Sci & Technol, Dept Math, Wuhan 430074, Peoples R China
[2] Huazhong Normal Univ, Dept Math, Wuhan 430079, Peoples R China
基金
美国国家科学基金会;
关键词
ABSORPTION SEMIGROUPS; EQUATIONS; SPECTRUM;
D O I
10.1112/blms/bdn125
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is concerned with characterizations and approximation properties of higher-order Kato class K(alpha)(R(n)) introduced by Davies and Hinz, as well as the applications to higher-order Schrodinger operators with such potentials.
引用
收藏
页码:293 / 301
页数:9
相关论文
共 34 条
[1]   BROWNIAN-MOTION AND HARNACK INEQUALITY FOR SCHRODINGER-OPERATORS [J].
AIZENMAN, M ;
SIMON, B .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1982, 35 (02) :209-273
[2]  
[Anonymous], 1976, GRUNDLEHREN MATH WIS
[3]  
[Anonymous], 1985, Sobolev Spaces
[4]  
[Anonymous], 1985, SEMIGROUPS OPERATORS
[5]   LP ESTIMATES FOR SCHRODINGER EVOLUTION-EQUATIONS [J].
BALABANE, M ;
EMAMIRAD, HA .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1985, 292 (01) :357-373
[6]  
Chung K-L., 1995, BROWNIAN MOTION SCHR
[7]  
Cycon H.L., 1987, Schrodinger Operators with Application to Quantum Mechanics and Global Geometry
[8]   Kato class potentials for higher order elliptic operators [J].
Davies, EB ;
Hinz, AM .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1998, 58 :669-678
[9]   L-p spectral theory of higher-order elliptic differential operators [J].
Davies, EB .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1997, 29 :513-546
[10]  
Gulisashvili A, 2002, LECT NOTES PURE APPL, V225, P159