An Improved Speech Segmentation and Clustering Algorithm Based on SOM and K-Means

被引:15
|
作者
Jiang, Nan [1 ]
Liu, Ting [2 ]
机构
[1] Criminal Invest Police Univ China, Shenyang 110854, Peoples R China
[2] Liaoning Univ, Shenyang 110036, Peoples R China
关键词
Neural networks - Speech recognition;
D O I
10.1155/2020/3608286
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper studies the segmentation and clustering of speaker speech. In order to improve the accuracy of speech endpoint detection, the traditional double-threshold short-time average zero-crossing rate is replaced by a better spectrum centroid feature, and the local maxima of the statistical feature sequence histogram are used to select the threshold, and a new speech endpoint detection algorithm is proposed. Compared with the traditional double-threshold algorithm, it effectively improves the detection accuracy and antinoise in low SNR. Thek-means algorithm of conventional clustering needs to give the number of clusters in advance and is greatly affected by the choice of initial cluster centers. At the same time, the self-organizing neural network algorithm converges slowly and cannot provide accurate clustering information. An improvedk-means speaker clustering algorithm based on self-organizing neural network is proposed. The number of clusters is predicted by the winning situation of the competitive neurons in the trained network, and the weights of the neurons are used as the initial cluster centers of thek-means algorithm. The experimental results of multiperson mixed speech segmentation show that the proposed algorithm can effectively improve the accuracy of speech clustering and make up for the shortcomings of thek-means algorithm and self-organizing neural network algorithm.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] Refined SAR Image Segmentation Algorithm Based on K-means Clustering
    Xing, Tao
    Hu, Qingrong
    Li, Jun
    Wang, Guanyong
    2016 CIE INTERNATIONAL CONFERENCE ON RADAR (RADAR), 2016,
  • [42] Image Segmentation using K-means Clustering Algorithm and Subtractive Clustering Algorithm
    Dhanachandra, Nameirakpam
    Manglem, Khumanthem
    Chanu, Yambem Jina
    ELEVENTH INTERNATIONAL CONFERENCE ON COMMUNICATION NETWORKS, ICCN 2015/INDIA ELEVENTH INTERNATIONAL CONFERENCE ON DATA MINING AND WAREHOUSING, ICDMW 2015/NDIA ELEVENTH INTERNATIONAL CONFERENCE ON IMAGE AND SIGNAL PROCESSING, ICISP 2015, 2015, 54 : 764 - 771
  • [43] The Clustering Algorithm Based on Improved Antlion Optimization Algorithm with K-Means Concepts
    Feng, Qing
    Pan, Jeng-Shyang
    Huang, Kuan-Chun
    Chu, Shu-Chuan
    ADVANCES IN INTELLIGENT INFORMATION HIDING AND MULTIMEDIA SIGNAL PROCESSING (IIH-MSP 2021 & FITAT 2021), VOL 2, 2022, 278 : 125 - 135
  • [44] Improved K-means Clustering Algorithm Based on the Optimized Initial Centriods
    Wang, Shunye
    2013 3RD INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND NETWORK TECHNOLOGY (ICCSNT), 2013, : 450 - 453
  • [45] Weighted K-means Clustering Analysis Based on Improved Genetic Algorithm
    Zhang, Tongjie
    Cao, Yan
    Mu, Xiangwei
    SENSORS, MECHATRONICS AND AUTOMATION, 2014, 511-512 : 904 - 908
  • [46] Improved artificial bee colony clustering algorithm based on K-means
    Wang Xuemei
    Wang Jin-bo
    MECHATRONICS ENGINEERING, COMPUTING AND INFORMATION TECHNOLOGY, 2014, 556-562 : 3852 - +
  • [47] An improved K-Means text clustering algorithm based on Local Search
    Liu, Xiangwei
    2008 4TH INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS, NETWORKING AND MOBILE COMPUTING, VOLS 1-31, 2008, : 11578 - 11581
  • [48] An Improved K-means Clustering Algorithm Based on the Voronoi Diagram Method
    Huo, Jiuyuan
    Zhang, Honglei
    ADVANCES IN SWARM INTELLIGENCE, ICSI 2016, PT II, 2016, 9713 : 107 - 114
  • [49] An Improved K-means Clustering Algorithm Based on Meliorated Initial Centre
    Li, Xiang
    Wei, Zhenwei
    Li, Lingling
    PROCEEDINGS OF THE 2016 2ND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND INDUSTRIAL ENGINEERING (AIIE 2016), 2016, 133 : 73 - 76
  • [50] Airport Role Orientation Based on Improved K-means Clustering Algorithm
    Xia, Qingjun
    Zhang, Zhaoyue
    Zhang, Baochen
    ADVANCED HYBRID INFORMATION PROCESSING, ADHIP 2019, PT II, 2019, 302 : 299 - 309