Dynamic scaling of the width distribution in Edwards-Wilkinson type models of interface dynamics

被引:30
作者
Antal, T
Racz, Z
机构
[1] Institute for Theoretical Physics, Eötvös University, Budapest, 1088
关键词
D O I
10.1103/PhysRevE.54.2256
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Edwards-Wilkinson type models are studied in 1+1 dimensions and the time-dependent distribution P-L(w(2),t) of the square of the width of an interface w(2) is calculated for systems of size L. We find that, using a flat interface as an initial condition, P-L(w(2),t) can be calculated exactly and it obeys scaling in the form [w(2)]P-infinity(L)(w(2),t) = Phi(w(2)/[w(2)](infinity),t/L(2)), where [w(2)](infinity) is the stationary value of w(2). For more complicated initial stares, scaling is observed only in the large-time limit and the scaling function depends on the initial amplitude of the longest wavelength mode. The short-time limit is also interesting since P-L(w(2),t) is found to closely approximate the log-normal distribution. These results are confirmed by Monte Carlo simulations on a singlestep, solid-on-solid type model (roof-top model) of surface evolution.
引用
收藏
页码:2256 / 2260
页数:5
相关论文
共 13 条
[1]  
Aitchison J, 1963, LOGNORMAL DISTRIBUTI
[2]   THE SURFACE STATISTICS OF A GRANULAR AGGREGATE [J].
EDWARDS, SF ;
WILKINSON, DR .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1982, 381 (1780) :17-31
[3]   SCALING OF THE ACTIVE ZONE IN THE EDEN PROCESS ON PERCOLATION NETWORKS AND THE BALLISTIC DEPOSITION MODEL [J].
FAMILY, F ;
VICSEK, T .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1985, 18 (02) :L75-L81
[4]   WIDTH DISTRIBUTION FOR RANDOM-WALK INTERFACES [J].
FOLTIN, G ;
OERDING, K ;
RACZ, Z ;
WORKMAN, RL ;
ZIA, RKP .
PHYSICAL REVIEW E, 1994, 50 (02) :R639-R642
[5]   DYNAMIC SCALING OF GROWING INTERFACES [J].
KARDAR, M ;
PARISI, G ;
ZHANG, YC .
PHYSICAL REVIEW LETTERS, 1986, 56 (09) :889-892
[6]  
KRUG J, 1991, SOLIDS EQUILIBRIUM G
[7]   BALLISTIC DEPOSITION ON SURFACES [J].
MEAKIN, P ;
RAMANLAL, P ;
SANDER, LM ;
BALL, RC .
PHYSICAL REVIEW A, 1986, 34 (06) :5091-5103
[8]   MAXIMUM-ENTROPY FORMALISM, FRACTALS, SCALING PHENOMENA, AND 1/F NOISE - A TALE OF TAILS [J].
MONTROLL, EW ;
SHLESINGER, MF .
JOURNAL OF STATISTICAL PHYSICS, 1983, 32 (02) :209-230
[9]   WIDTH DISTRIBUTION OF CURVATURE-DRIVEN INTERFACES - A STUDY OF UNIVERSALITY [J].
PLISCHKE, M ;
RACZ, Z ;
ZIA, RKP .
PHYSICAL REVIEW E, 1994, 50 (05) :3589-3593
[10]  
PLISCHKE M, 1986, PHYS REV B, V35, P7