Upregulation of an Arabidopsis RING-H2 gene, XERICO, confers drought tolerance through increased abscisic acid biosynthesis

被引:288
|
作者
Ko, Jae-Heung
Yang, Seung H.
Han, Kyung-Hwan [1 ]
机构
[1] Michigan State Univ, Dept Forestry, E Lansing, MI 48824 USA
[2] Michigan State Univ, Dept Energy, Plant Res Lab, E Lansing, MI 48824 USA
来源
PLANT JOURNAL | 2006年 / 47卷 / 03期
关键词
abscisic acid biosynthesis; drought tolerance; GeneChip; really interesting new gene-H2; ubiquitin/proteasome pathway; zinc finger;
D O I
10.1111/j.1365-313X.2006.02782.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
RING (really interesting new gene) zinc-finger proteins have important regulatory roles in the development of a variety of organisms. The XERICO gene encodes a small protein (162 amino acids) with an N-terminal trans-membrane domain and a RING-H2 zinc-finger motif located at the C-terminus. In silico gene-expression analysis indicated that XERICO is induced by salt and osmotic stress. Compared with wild-type (WT) Arabidopsis plants, transgenic plants overexpressing XERICO (35S::XERICO) exhibited hypersensitivity to salt and osmotic stress and exogenous abscisic acid (ABA) during germination and early seedling growth. When subjected to a drought treatment, transcriptional upregulation of a key ABA-biosynthesis gene, AtNCED3, was much faster and stronger in 35S::XERICO plants compared with WT plants. Further, upregulation of XERICO substantially increased cellular ABA levels. The adult 35S::XERICO plants, in contrast to early seedling growth, showed a marked increase in their tolerance to drought stress. Yeast two-hybrid screening indicated that XERICO interacts with an E2 ubiquitin-conjugating enzyme (AtUBC8) and ASK1-interacting F-box protein (AtTLP9), which is involved in the ABA-signaling pathway. Affymetrix GeneChip array analysis showed that the expressions of many of the genes involved in the biosynthesis of plant hormones (e.g. ethylene, brassinosteroid, gibberellic acid) were significantly changed in the 35S::XERICO plants. These results suggest that the homeostasis of various plant hormones might be altered in 35S::XERICO plants, possibly by overaccumulation of ABA.
引用
收藏
页码:343 / 355
页数:13
相关论文
共 50 条
  • [1] Increased abscisic acid sensitivity and drought tolerance of Arabidopsis by overexpression of poplar abscisic acid receptors
    Li, Qing
    Tian, Qianqian
    Zhang, Yue
    Niu, Mengxue
    Yu, Xiaoqian
    Lian, Conglong
    Liu, Chao
    Wang, Hou-Ling
    Yin, Weilun
    Xia, Xinli
    PLANT CELL TISSUE AND ORGAN CULTURE, 2022, 148 (02) : 231 - 245
  • [2] Increased abscisic acid sensitivity and drought tolerance of Arabidopsis by overexpression of poplar abscisic acid receptors
    Qing Li
    Qianqian Tian
    Yue Zhang
    Mengxue Niu
    Xiaoqian Yu
    Conglong Lian
    Chao Liu
    Hou-Ling Wang
    Weilun Yin
    Xinli Xia
    Plant Cell, Tissue and Organ Culture (PCTOC), 2022, 148 : 231 - 245
  • [3] Overexpression of Arabidopsis XERICO gene confers enhanced drought and salt stress tolerance in rice (Oryza Sativa L.)
    De-Er Zeng
    Pei Hou
    Fangming Xiao
    Yongsheng Liu
    Journal of Plant Biochemistry and Biotechnology, 2015, 24 : 56 - 64
  • [4] Overexpression of Arabidopsis XERICO gene confers enhanced drought and salt stress tolerance in rice (Oryza Sativa L.)
    Zeng, De-Er
    Hou, Pei
    Xiao, Fangming
    Liu, Yongsheng
    JOURNAL OF PLANT BIOCHEMISTRY AND BIOTECHNOLOGY, 2015, 24 (01) : 56 - 64
  • [5] Overexpression of Sorghum WINL1 gene confers drought tolerance in Arabidopsis thaliana through the regulation of cuticular biosynthesis
    Bao, Shu-Guang
    Shi, Jian-Xin
    Luo, Feng
    Ding, Bo
    Hao, Jin-Yu
    Xie, Xiao-Dong
    Sun, Shou-Jun
    PLANT CELL TISSUE AND ORGAN CULTURE, 2017, 128 (02) : 347 - 356
  • [6] Overexpression of Sorghum WINL1 gene confers drought tolerance in Arabidopsis thaliana through the regulation of cuticular biosynthesis
    Shu-Guang Bao
    Jian-Xin Shi
    Feng Luo
    Bo Ding
    Jin-Yu Hao
    Xiao-Dong Xie
    Shou-Jun Sun
    Plant Cell, Tissue and Organ Culture (PCTOC), 2017, 128 : 347 - 356
  • [7] Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis
    Iuchi, S
    Kobayashi, M
    Taji, T
    Naramoto, M
    Seki, M
    Kato, T
    Tabata, S
    Kakubari, Y
    Yamaguchi-Shinozaki, K
    Shinozaki, K
    PLANT JOURNAL, 2001, 27 (04): : 325 - 333
  • [8] OsSAPK2 Confers Abscisic Acid Sensitivity and Tolerance to Drought Stress in Rice
    Lou, Dengji
    Wang, Houping
    Liang, Gang
    Yu, Diqiu
    FRONTIERS IN PLANT SCIENCE, 2017, 8
  • [9] Transgenic expression of MYB15 confers enhanced sensitivity to abscisic acid and improved drought tolerance in Arabidopsis thaliana
    Ding, Zhenhua
    Li, Shiming
    An, Xueli
    Liu, Xin
    Qin, Huanju
    Wang, Damen
    JOURNAL OF GENETICS AND GENOMICS, 2009, 36 (01) : 17 - 29