Exceptional solutions to the Painleve VI equation associated with the generalized Jacobi weight

被引:3
作者
Lyu, Shulin [1 ]
Chen, Yang [1 ]
机构
[1] Univ Macau, Dept Math, Ave Univ, Taipa, Macau, Peoples R China
关键词
Hankel determinants; asymptotic expansions; Painleve equations; DIFFERENTIAL-EQUATIONS; LINEAR STATISTICS;
D O I
10.1142/S2010326317500034
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the generalized Jacobi weight x(alpha)(1 -x)(beta) vertical bar x -t vertical bar(gamma), x is an element of [0, 1], t(t -1) > 0, alpha > -1, beta >-1, gamma is an element of R. As is shown in [D. Dai and L. Zhang, Painleve VI and Henkel determinants for the generalized Jocobi weight, J. Phys. A: Math. Theor. 43 (2010), Article ID: 055207, 14pp.], the corresponding Hankel determinant is the t-function of a particular Painleve VI. We present all the possible asymptotic expansions of the solution of the Painleve VI equation near 0, 8 and 1 for generic (alpha, beta, gamma). For four special cases of (alpha, beta, gamma) which are related to the dimension of the Hankel determinant, we can find the exceptional solutions of the Painleve VI equation according to the results of [A. Eremenko, A. Gabrielov and A. Hinkkanen, Exceptional solutions to the Painleve VI equation, preprint (2016), arXiv: 1602.04694], and thus give another characterization of the Hankel determinant.
引用
收藏
页数:31
相关论文
共 19 条
[1]  
[Anonymous], 2008, Functions of matrices: theory and computation
[2]   Perturbed Laguerre unitary ensembles, Hankel determinants, and information theory [J].
Basor, Estelle ;
Chen, Yang .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2015, 38 (18) :4840-4851
[3]   The Hilbert series of N=1 SO(Nc) and Sp(Nc) SQCD, Painleve VI and integrable systems [J].
Basor, Estelle ;
Chen, Yang ;
Mekareeya, Noppadol .
NUCLEAR PHYSICS B, 2012, 860 (03) :421-463
[4]   Singular linear statistics of the Laguerre unitary ensemble and Painleve. III. Double scaling analysis [J].
Chen, Min ;
Chen, Yang .
JOURNAL OF MATHEMATICAL PHYSICS, 2015, 56 (06)
[5]   DISTRIBUTION OF LINEAR STATISTICS IN RANDOM-MATRIX MODELS [J].
CHEN, Y ;
MANNING, SM .
JOURNAL OF PHYSICS-CONDENSED MATTER, 1994, 6 (16) :3039-3044
[6]   On the linear statistics of Hermitian random matrices [J].
Chen, Y ;
Lawrence, N .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (04) :1141-1152
[7]   Jacobi polynomials from compatibility conditions [J].
Chen, Y ;
Ismail, M .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (02) :465-472
[8]   Thermodynamic relations of the Hermitian matrix ensembles [J].
Chen, Y ;
Ismail, MEH .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (19) :6633-6654
[9]   Ladder operators and differential equations for orthogonal polynomials [J].
Chen, Y ;
Ismail, MEH .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (22) :7817-7829
[10]  
Chen Y., 2010, ARXIV10070496V1