SPLIT QUATERNIONS AND INTEGER-VALUED POLYNOMIALS

被引:1
|
作者
Cigliola, A. [1 ]
Loper, K. A. [2 ]
Werner, N. J. [2 ]
机构
[1] Univ Roma Tre, Dipartimento Matemat & Fis, Rome, Italy
[2] Ohio State Univ, Newark, OH USA
关键词
Integer-valued polynomial; Noncommutative; Quaternion; MATRICES; RINGS;
D O I
10.1080/00927872.2014.897561
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The integer split quaternions form a noncommutative algebra over Z. We describe the prime and maximal spectrum of the integer split quaternions and investigate integer-valued polynomials over this ring. We prove that the set of such polynomials forms a ring, and proceed to study its prime and maximal ideals. In particular we completely classify the primes above 0, we obtain partial characterizations of primes above odd prime integers, and we give sufficient conditions for building maximal ideals above 2.
引用
收藏
页码:182 / 196
页数:15
相关论文
共 50 条
  • [41] Decomposition of integer-valued polynomial algebras
    Peruginelli, Giulio
    Werner, Nicholas J.
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2018, 222 (09) : 2562 - 2579
  • [42] Non-triviality conditions for integer-valued polynomial rings on algebras
    Peruginelli, Giulio
    Werner, Nicholas J.
    MONATSHEFTE FUR MATHEMATIK, 2017, 183 (01): : 177 - 189
  • [43] Algebraic-integer valued polynomials
    Mulay, Shashikant
    JOURNAL OF NUMBER THEORY, 2022, 240 : 490 - 521
  • [44] Integer-valued Euler–Jackson’s finite differences
    David Adam
    Youssef Fares
    Monatshefte für Mathematik, 2010, 161 : 15 - 32
  • [45] Integer-valued Euler-Jackson's finite differences
    Adam, David
    Fares, Youssef
    MONATSHEFTE FUR MATHEMATIK, 2010, 161 (01): : 15 - 32
  • [46] INTEGER-VALUED POLYNOMIAL RINGS, t-CLOSURE, AND ASSOCIATED PRIMES
    Elliott, Jesse
    COMMUNICATIONS IN ALGEBRA, 2011, 39 (11) : 4128 - 4147
  • [47] Non-triviality conditions for integer-valued polynomial rings on algebras
    Giulio Peruginelli
    Nicholas J. Werner
    Monatshefte für Mathematik, 2017, 183 : 177 - 189
  • [48] On the Semisimilarity and Consemisimilarity of Split Quaternions
    Yildiz, Onder Gokmen
    Kosal, Hidayet Huda
    Tosun, Murat
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2016, 26 (02) : 847 - 859
  • [49] On some properties of split Horadam quaternions
    Brod, Dorota
    ACTA UNIVERSITATIS SAPIENTIAE-MATHEMATICA, 2020, 12 (02) : 260 - 271
  • [50] Cramer's rule over quaternions and split quaternions: A unified algebraic approach in quaternionic and split quaternionic mechanics
    Wang, Gang
    Zhang, Dong
    Guo, Zhenwei
    Jiang, Tongsong
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2021, 20 (05)