Polycaprolactone-Coated 3D Printed Tricalcium Phosphate Scaffolds for Bone Tissue Engineering: In Vitro Alendronate Release Behavior and Local Delivery Effect on In Vivo Osteogenesis

被引:164
|
作者
Tarafder, Solaiman [1 ]
Bose, Susmita [1 ]
机构
[1] Washington State Univ, Sch Mech & Mat Engn, WM Keck Biomed Mat Res Lab, Pullman, WA 99164 USA
基金
美国国家卫生研究院;
关键词
tricalcium phosphate (TCP); 3D printing (3DP); in vitro alendronate release; polycaprolactone (PCL) coating; in vivo osteogenesis; CONTROLLED DRUG-RELEASE; BIOLOGICAL-PROPERTIES; RESORBABLE CERAMICS; BISPHOSPHONATES; MGO; ZOLEDRONATE; MECHANISM; COATINGS; MATRICES; CARRIERS;
D O I
10.1021/am501048n
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The aim of this work was to evaluate the effect of in vitro alendronate (AD) release behavior through polycaprolactone (PCL) coating on in vivo bone formation using PCL-coated 3D printed interconnected porous tricalcium phosphate (TCP) scaffolds. Higher AD and Ca2+ ion release was observed at lower pH (5.0) than that at higher pH (7.4). AD and Ca2+ release, surface morphology, and phase analysis after release indicated a matrix degradation dominated AD release caused by TCP dissolution. PCL coating showed its effectiveness for controlled and sustained AD release. Six different scaffold compositions, namely, (i) TCP (bare TCP), (ii) TCP + AD (AD-coated TCP), (iii) TCP + PCL (PCL-coated TCP), (iv) TCP + PCL + AD, (v) TCP + AD + PCL, and (vi) TCP + AD + PCL + AD were tested in the distal femoral defect of Sprague Dawley rats for 6 and 10 weeks. An excellent bone formation inside the micro and macro pores of the scaffolds was observed from histomorphology. Histomorphometric analysis revealed maximum new bone formation in TCP + AD + PCL scaffolds after 6 weeks. No adverse effect of PCL on bioactivity of TCP and in vivo bone formation was observed. All scaffolds with AD showed higher bone formation and reduced TRAP (tartrate resistant acid phosphatase) positive cells activity compared to bare TCP and TCP coated with only PCL. Bare TCP scaffolds showed the highest TRAP positive cells activity followed by TCP + PCL scaffolds, whereas TCP + AD scaffolds showed the lowest TRAP activity. A higher TRAP positive cells activity was observed in TCP + AD + PCL compared to TCP + AD scaffolds after 6 weeks. Our results show that in vivo local AD delivery from PCL-coated 3DP TCP scaffolds could further induce increased early bone formation.
引用
收藏
页码:9955 / 9965
页数:11
相关论文
共 50 条
  • [31] Fabrication and in vitro evaluation of 3D printed porous silicate substituted calcium phosphate scaffolds for bone tissue engineering
    Chen, Dechun
    Chen, Guanghua
    Zhang, Xin
    Chen, Jingtao
    Li, Jinmeng
    Kang, Kunlong
    He, Weitao
    Kong, Yuanhang
    Wu, Leilei
    Su, Bo
    Zhao, Kui
    Si, Daiwei
    Wang, Xintao
    BIOTECHNOLOGY AND BIOENGINEERING, 2022, 119 (11) : 3297 - 3310
  • [32] Evaluation of 3D printed polycaprolactone/tetracalcium phosphate nanocomposite as potential scaffold for bone tissue engineering
    Borhan, Shokoufeh
    Hesaraki, Saeed
    Shahrezaee, Mostafa
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2025, 36 : 1130 - 1145
  • [33] SiO2 and ZnO dopants in three-dimensionally printed tricalcium phosphate bone tissue engineering scaffolds enhance osteogenesis and angiogenesis in vivo
    Fielding, Gary
    Bose, Susmita
    ACTA BIOMATERIALIA, 2013, 9 (11) : 9137 - 9148
  • [34] 3D printed porous polycaprolactone/oyster shell powder (PCL/OSP) scaffolds for bone tissue engineering
    Luo, Wenfeng
    Zhang, Shuangying
    Lan, Yuewei
    Huang, Chen
    Wang, Chao
    Lai, Xuexu
    Chen, Hanwei
    Ao, Ningjian
    MATERIALS RESEARCH EXPRESS, 2018, 5 (04)
  • [35] 3D printing of bioceramic/polycaprolactone composite scaffolds for bone tissue engineering
    Shie, Ming-You
    Lai, Chun-Che
    Chiang, Po-Han
    Chung, Han-Chi
    Ho, Chia-Che
    2022 IEEE 22ND INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOENGINEERING (BIBE 2022), 2022, : 142 - 145
  • [36] 3D Printed Polycaprolactone Carbon Nanotube Composite Scaffolds for Cardiac Tissue Engineering
    Ho, Chee Meng Benjamin
    Mishra, Abhinay
    Lin, Pearlyn Teo Pei
    Ng, Sum Huan
    Yeong, Wai Yee
    Kim, Young-Jin
    Yoon, Yong-Jin
    MACROMOLECULAR BIOSCIENCE, 2017, 17 (04)
  • [37] Fabrication and In Vitro Evaluation of 3D Printed Porous Polyetherimide Scaffolds for Bone Tissue Engineering
    Tang, Xiongfeng
    Qin, Yanguo
    Xu, Xinyu
    Guo, Deming
    Ye, Wenli
    Wu, Wenzheng
    Li, Ruiyan
    BIOMED RESEARCH INTERNATIONAL, 2019, 2019
  • [38] Vitamin D3 Release from Traditionally and Additively Manufactured Tricalcium Phosphate Bone Tissue Engineering Scaffolds
    Vu, Ashley A.
    Bose, Susmita
    ANNALS OF BIOMEDICAL ENGINEERING, 2020, 48 (03) : 1025 - 1033
  • [39] Vitamin D3 Release from Traditionally and Additively Manufactured Tricalcium Phosphate Bone Tissue Engineering Scaffolds
    Ashley A. Vu
    Susmita Bose
    Annals of Biomedical Engineering, 2020, 48 : 1025 - 1033
  • [40] Multifunctional 3D-Printed Magnetic Polycaprolactone/Hydroxyapatite Scaffolds for Bone Tissue Engineering
    Petretta, Mauro
    Gambardella, Alessandro
    Desando, Giovanna
    Cavallo, Carola
    Bartolotti, Isabella
    Shelyakova, Tatiana
    Goranov, Vitaly
    Brucale, Marco
    Dediu, Valentin Alek
    Fini, Milena
    Grigolo, Brunella
    POLYMERS, 2021, 13 (21)