Calculation of positron binding energies of amino acids with the any-particle molecular-orbital approach

被引:34
作者
Charry, J. [1 ]
Romero, J. [1 ]
Varella, M. T. do N. [2 ]
Reyes, A. [1 ]
机构
[1] Univ Nacl Colombia, Dept Chem, Bogota 111321, Cundinamarca, Colombia
[2] Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil
来源
PHYSICAL REVIEW A | 2014年 / 89卷 / 05期
关键词
QUANTUM MONTE-CARLO; CONFIGURATION-INTERACTION; BOUND-STATES; MASS-SPECTROMETRY; ORGANIC-MOLECULES; ATOMS; ANNIHILATION; IONIZATION; ELECTRONS; COMPLEX;
D O I
10.1103/PhysRevA.89.052709
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We report positron binding energies (PBEs) for the 20 standard amino acids in the global minimum, hydrogen-bonded, and zwitterionic forms. The calculations are performed at the any-particle molecular-orbital (APMO) Hartree-Fock (HF), Koopmans' theorem (KT), second-order Moller-Plesset (MP2), and second-order propagator (P2) levels of theory. Our study reveals that the APMO KT and APMO P2 methods generally provide higher PBEs than the APMO HF and APMO MP2 methods, respectively, with only a fraction of the computational costs of the latter. We also discuss the impact of the choice of the positronic center on the PBEs and propose a simple and inexpensive procedure, based on the condensed Fukui functions of the parent molecules, to select the most suitable expansion center. The results reported so far indicate that APMO KT and APMO P2 methods are convenient options for a qualitative or semiquantitative analysis of positron binding in medium to large polyatomic systems.
引用
收藏
页数:11
相关论文
共 66 条
[1]  
Abdoul-Carime H., 1998, OPT PLASMA PHYS, V2, P149
[2]   Modeling positrons in molecular electronic structure calculations with the nuclear-electronic orbital method [J].
Adamson, Paul E. ;
Duan, Xiaofeng F. ;
Burggraf, Larry W. ;
Pak, Michael V. ;
Swalina, Chet ;
Hammes-Schiffer, Sharon .
JOURNAL OF PHYSICAL CHEMISTRY A, 2008, 112 (06) :1346-1351
[3]   Production and detection of cold antihydrogen atoms [J].
Amoretti, M ;
Amsler, C ;
Bonomi, G ;
Bouchta, A ;
Bowe, P ;
Carraro, C ;
Cesar, CL ;
Charlton, M ;
Collier, MJT ;
Doser, M ;
Filippini, V ;
Fine, KS ;
Fontana, A ;
Fujiwara, MC ;
Funakoshi, R ;
Genova, P ;
Hangst, JS ;
Hayano, RS ;
Holzscheiter, MH ;
Jorgensen, LV ;
Lagomarsino, V ;
Landua, R ;
Lindelöf, D ;
Rizzini, EL ;
Macri, M ;
Madsen, N ;
Manuzio, G ;
Marchesotti, M ;
Montagna, P ;
Pruys, H ;
Regenfus, C ;
Riedler, P ;
Rochet, J ;
Rotondi, A ;
Rouleau, G ;
Testera, G ;
Variola, A ;
Watson, TL ;
van der Werf, DP .
NATURE, 2002, 419 (6906) :456-459
[4]   Collisions involving positronium [J].
Armitage, S. ;
Leslie, D. E. ;
Beale, J. ;
Laricchia, G. .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2006, 247 (01) :98-104
[5]   DETERMINING ATOM-CENTERED MONOPOLES FROM MOLECULAR ELECTROSTATIC POTENTIALS - THE NEED FOR HIGH SAMPLING DENSITY IN FORMAMIDE CONFORMATIONAL-ANALYSIS [J].
BRENEMAN, CM ;
WIBERG, KB .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1990, 11 (03) :361-373
[6]   Positronium chemistry by quantum Monte Carlo. I. Positronium-first row atom complexes [J].
Bressanini, D ;
Mella, M ;
Morosi, G .
JOURNAL OF CHEMICAL PHYSICS, 1998, 108 (12) :4756-4760
[7]   Excited states of positronic atoms [J].
Bromley, M. W. J. ;
Mitroy, J. .
PHYSICAL REVIEW A, 2007, 75 (04)
[8]   Positron Attachment to the He Doubly Excited States [J].
Bromley, M. W. J. ;
Mitroy, J. ;
Varga, K. .
PHYSICAL REVIEW LETTERS, 2012, 109 (06)
[9]   Configuration interaction calculations of positronic atoms and ions [J].
Bromley, MWJ ;
Mitroy, J ;
Ryzhikh, GG .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2000, 171 (1-2) :47-59
[10]   Positron binding energies for alkali hydrides [J].
Buenker, RJ ;
Liebermann, HP ;
Melnikov, V ;
Tachikawa, M ;
Pichl, L .
JOURNAL OF PHYSICAL CHEMISTRY A, 2005, 109 (26) :5956-5964