Verification of Quantitative Precipitation Reforecasts over the Southeastern United States

被引:14
作者
Baxter, Martin A. [1 ]
Lackmann, Gary M. [2 ]
Mahoney, Kelly M. [3 ,4 ]
Workoff, Thomas E. [5 ,6 ]
Hamill, Thomas M. [4 ]
机构
[1] Cent Michigan Univ, Dept Earth & Atmospher Sci, Mt Pleasant, MI 48859 USA
[2] N Carolina State Univ, Dept Marine Earth & Atmospher Sci, Raleigh, NC 27695 USA
[3] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA
[4] NOAA, Earth Syst Res Lab, Div Phys Sci, Boulder, CO USA
[5] NOAA, NCEP, Weather Predict Ctr, College Pk, MD USA
[6] Syst Res Grp Inc, College Pk, MD USA
关键词
SKILL;
D O I
10.1175/WAF-D-14-00055.1
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
NOAA's second-generation reforecasts are approximately consistent with the operational version of the 2012 NOAA Global Ensemble Forecast System (GEFS). The reforecasts allow verification to be performed across a multidecadal time period using a static model, in contrast to verifications performed using an ever-evolving operational modeling system. This contribution examines three commonly used verification metrics for reforecasts of precipitation over the southeastern United States: equitable threat score, bias, and ranked probability skill score. Analysis of the verification metrics highlights the variation in the ability of the GEFS to predict precipitation across amount, season, forecast lead time, and location. Beyond day 5.5, there is little useful skill in quantitative precipitation forecasts (QPFs) or probabilistic QPFs. For lighter precipitation thresholds [e.g., 5 and 10 mm (24 h)(-1), use of the ensemble mean adds about 10% to the forecast skill over the deterministic control. QPFs have increased in accuracy from 1985 to 2013, likely due to improvements in observations. Results of this investigation are a first step toward using the reforecast database to distinguish weather regimes that the GEFS typically predicts well from those regimes that the GEFS typically predicts poorly.
引用
收藏
页码:1199 / 1207
页数:9
相关论文
共 18 条
[1]  
[Anonymous], 2012, Forecast Verificaton: A Practitioner's Guide in Atmospheric Science
[2]  
[Anonymous], 2011, STAT METHODS ATMOSPH, DOI DOI 10.1016/C2010-0-65519-2
[3]   Assessing objective techniques for gauge-based analyses of global daily precipitation [J].
Chen, Mingyue ;
Shi, Wei ;
Xie, Pingping ;
Silva, Viviane B. S. ;
Kousky, Vernon E. ;
Higgins, R. Wayne ;
Janowiak, John E. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2008, 113 (D4)
[4]   Improving quantitative precipitation forecasts in the warm season - A USWRP research and development strategy [J].
Fritsch, JM ;
Carbone, RE .
BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 2004, 85 (07) :955-965
[5]   Probabilistic forecast calibration using ECMWF and GFS ensemble reforecasts. Part II: Precipitation [J].
Hamill, Thomas M. ;
Hagedorn, Renate ;
Whitaker, Jeffrey S. .
MONTHLY WEATHER REVIEW, 2008, 136 (07) :2620-2632
[6]   Measuring forecast skill: is it real skill or is it the varying climatology? [J].
Hamill, Thomas M. ;
Juras, Josip .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2006, 132 (621) :2905-2923
[7]   Probabilistic quantitative precipitation forecasts based on reforecast analogs: Theory and application [J].
Hamill, Thomas M. ;
Whitaker, Jeffrey S. .
MONTHLY WEATHER REVIEW, 2006, 134 (11) :3209-3229
[8]   NOAA'S SECOND-GENERATION GLOBAL MEDIUM-RANGE ENSEMBLE REFORECAST DATASET [J].
Hamill, Thomas M. ;
Bates, Gary T. ;
Whitaker, Jeffrey S. ;
Murray, Donald R. ;
Fiorino, Michael ;
Galarneau, Thomas J., Jr. ;
Zhu, Yuejian ;
Lapenta, William .
BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 2013, 94 (10) :1553-1565
[9]  
Hamill TM, 1999, WEATHER FORECAST, V14, P155, DOI 10.1175/1520-0434(1999)014<0155:HTFENP>2.0.CO
[10]  
2