Empirical estimates for heteroscedastic hierarchical dynamic normal models

被引:0
作者
Ghoreishi, S. K. [1 ]
Wu, Jingjing [2 ]
机构
[1] Univ Qom, Fac Sci, Dept Stat, Qom, Iran
[2] Univ Calgary, Dept Math & Stat, Calgary, AB, Canada
关键词
Asymptotic optimality; Heteroscedasticity; Shrinkage estimators; Stein's unbiased risk estimator (SURE); Dynamic models; BAYES;
D O I
10.1007/s42952-020-00093-2
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The available heteroscedastic hierarchical models perform well for a wide range of real-world data, but for data sets that exhibit a dynamic structure they seem fit poorly. In this work, we develop a two-level dynamic heteroscedastic hierarchical model and suggest some empirical estimators for the association hyper-parameters. Moreover, we derive the risk properties of the estimators. Our proposed model has the feature that the dependence structure among observations is produced from the hidden variables in the second level and not through the observations themselves. The comparison between various empirical estimators is illustrated through a simulation study. Finally, we apply our methods to a baseball data.
引用
收藏
页码:528 / 543
页数:16
相关论文
共 50 条
  • [31] Semiparametric efficient estimators in heteroscedastic error models
    Kim, Mijeong
    Ma, Yanyuan
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2019, 71 (01) : 1 - 28
  • [32] Testing for additivity in nonparametric heteroscedastic regression models
    Zambom, Adriano Zanin
    Kim, Jongwook
    JOURNAL OF NONPARAMETRIC STATISTICS, 2020, 32 (03) : 793 - 813
  • [33] Heteroscedastic Latent Trait Models for Dichotomous Data
    Molenaar, Dylan
    PSYCHOMETRIKA, 2015, 80 (03) : 625 - 644
  • [34] Multivariate, heteroscedastic empirical Bayes via nonparametric maximum likelihood
    Soloff, Jake A.
    Guntuboyina, Adityanand
    Sen, Bodhisattva
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2024, 87 (01) : 1 - 32
  • [35] Inference on measures of niche overlap for heteroscedastic normal populations
    Mulekar, MS
    Mishra, SN
    AMERICAN JOURNAL OF MATHEMATICAL AND MANAGEMENT SCIENCES, VOL 17, NOS 1 AND 2, 1997: MULTIVARIATE STATISTICAL INFERENCE - MSI-2000L MULTIVARIATE STATISTICAL ANALYSIS IN HONOR OF PROFESSOR MINORU SIOTANI ON HIS 70TH BIRTHDAY, 1997, 17 (1&2): : 163 - 185
  • [36] Variance Estimation in Heteroscedastic Models by Undecimated Haar Transform
    Palanisamy, T.
    Ravichandran, J.
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2015, 44 (06) : 1532 - 1544
  • [37] Adaptive Inference in Heteroscedastic Fractional Time Series Models
    Cavaliere, Giuseppe
    Nielsen, Morten Orregaard
    Taylor, A. M. Robert
    JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2022, 40 (01) : 50 - 65
  • [38] Parametric inference of autoregressive heteroscedastic models with errors in variables
    El Kolei, Salima
    Pelgrin, Florian
    STATISTICS & PROBABILITY LETTERS, 2017, 130 : 63 - 70
  • [39] A Parametric Bootstrap Test for Comparing Heteroscedastic Regression Models
    Tian, Lili
    Changxing, M. A.
    Vexler, Albert
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2009, 38 (05) : 1026 - 1036
  • [40] Heteroscedastic Models to Track Relationships between Management Metrics
    Jiang, Miao
    Munawar, Mohammad A.
    Reidemeister, Thomas
    Ward, Paul A. S.
    2009 IFIP/IEEE INTERNATIONAL SYMPOSIUM ON INTEGRATED NETWORK MANAGEMENT (IM 2009) VOLS 1 AND 2, 2009, : 375 - 381