Empirical estimates for heteroscedastic hierarchical dynamic normal models

被引:0
作者
Ghoreishi, S. K. [1 ]
Wu, Jingjing [2 ]
机构
[1] Univ Qom, Fac Sci, Dept Stat, Qom, Iran
[2] Univ Calgary, Dept Math & Stat, Calgary, AB, Canada
关键词
Asymptotic optimality; Heteroscedasticity; Shrinkage estimators; Stein's unbiased risk estimator (SURE); Dynamic models; BAYES;
D O I
10.1007/s42952-020-00093-2
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The available heteroscedastic hierarchical models perform well for a wide range of real-world data, but for data sets that exhibit a dynamic structure they seem fit poorly. In this work, we develop a two-level dynamic heteroscedastic hierarchical model and suggest some empirical estimators for the association hyper-parameters. Moreover, we derive the risk properties of the estimators. Our proposed model has the feature that the dependence structure among observations is produced from the hidden variables in the second level and not through the observations themselves. The comparison between various empirical estimators is illustrated through a simulation study. Finally, we apply our methods to a baseball data.
引用
收藏
页码:528 / 543
页数:16
相关论文
共 50 条
  • [21] Empirical likelihood for heteroscedastic partially linear single-index models with growing dimensional data
    Jianglin Fang
    Wanrong Liu
    Xuewen Lu
    Metrika, 2018, 81 : 255 - 281
  • [22] Weighted validation of heteroscedastic regression models for better selection
    Jung, Yoonsuh
    Kim, Hayoung
    STATISTICAL ANALYSIS AND DATA MINING, 2022, 15 (01) : 57 - 68
  • [23] Robust bootstrap estimates in heteroscedastic semi-varying coefficient models and applications in analyzing Australia CPI data
    Zhao, Yan-Yong
    Lin, Jin-Guan
    Wang, Hong-Xia
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2017, 46 (04) : 2638 - 2653
  • [24] FITTING HETEROSCEDASTIC REGRESSION-MODELS
    WELSH, AH
    CARROLL, RJ
    RUPPERT, D
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1994, 89 (425) : 100 - 116
  • [25] Efficient quantile regression for heteroscedastic models
    Jung, Yoonsuh
    Lee, Yoonkyung
    MacEachern, Steven N.
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2015, 85 (13) : 2548 - 2568
  • [26] ON CONDITIONALLY HETEROSCEDASTIC AR MODELS WITH THRESHOLDS
    Chan, Kung-Sik
    Li, Dong
    Ling, Shiqing
    Tong, Howell
    STATISTICA SINICA, 2014, 24 (02) : 625 - 652
  • [27] Semiparametric efficient estimators in heteroscedastic error models
    Mijeong Kim
    Yanyuan Ma
    Annals of the Institute of Statistical Mathematics, 2019, 71 : 1 - 28
  • [28] Efficient Estimation in Heteroscedastic Varying Coefficient Models
    Wei, Chuanhua
    Wan, Lijie
    ECONOMETRICS, 2015, 3 (03): : 525 - 531
  • [29] Heteroscedastic Latent Trait Models for Dichotomous Data
    Dylan Molenaar
    Psychometrika, 2015, 80 : 625 - 644
  • [30] COMPROMISE DESIGNS IN HETEROSCEDASTIC LINEAR-MODELS
    DASGUPTA, A
    MUKHOPADHYAY, S
    STUDDEN, WJ
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1992, 32 (03) : 363 - 384