MgZnO/ZnO Heterostructure Field-Effect Transistors Fabricated by RF-Sputtering

被引:24
作者
Cheng, I-Chun [1 ]
Wang, Bo-Shiung [1 ]
Hou, Hsin-Hu [1 ]
Chen, Jian-Zhang [2 ]
机构
[1] Natl Taiwan Univ, Grad Inst Photon & Optoelect, Taipei 10617, Taiwan
[2] Natl Taiwan Univ, Inst Appl Mech, Taipei 10617, Taiwan
来源
THIN FILM TRANSISTORS 11 (TFT 11) | 2012年 / 50卷 / 08期
关键词
THIN-FILM TRANSISTORS; 2-DIMENSIONAL ELECTRON-GAS; ACTIVE CHANNEL LAYER; ALLOY-FILMS; QUANTUM-WELLS; BIAS STRESS; BAND-GAP; ZNO; PERFORMANCE; MGXZN1-XO;
D O I
10.1149/05008.0083ecst
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
We study the rf-sputtered MgZnO/ZnO heterostructure material system. Two dimensional electron gases (2DEGs) are observed in the defective polycrystalline material system. As the MgZnO thickness increases, the sheet resistance reduces rapidly and then saturates. The enhancement of the interfacial polarization effect becomes stronger, corresponding to a larger amount of resistance reduction, when the Mg content in the MgZnO layer increases. Aldoped MgZnO is then introduced as the modulation doping layer to further raise the carrier density without diminishing the carrier mobility. Finally, rf-sputtered MgZnO/ZnO heterostructure thin film transistors (TFTs) with coplanar top-gate geometry are successfully demonstrated. The threshold voltage (Vth) field-effect mobility (mu(FE)) and on/off current ratio (ON/OFF) of the Mg0.2Zn0.8O/ZnO heterostructure thin film transistor are -0.55 V, 84.2 cm(2)V(-1) s(-1), and 2 x 10(6), respectively. In comparison to the ZnO counterpart (VTH- 0.47V, mu(FE)= 1.5 cm(2) V-1 s(-1), ON/OFF = 10(5)), the polarization effect truly increases the carrier concentration at the interface and improves the field-effect mobility. The result suggests that the rf-sputtered polycrystalline MgZnO/ZnO material system can be a promising candidate for the application of low-cost large-area high-mobility devices.
引用
收藏
页码:83 / 93
页数:11
相关论文
共 50 条
  • [41] Effect of UV-Ozone Treatment on the Performance of ZnO TFTs Fabricated by RF Sputtering Deposition Technique
    Wu, Jia-Ling
    Lin, Han-Yu
    Kuo, Po-Hung
    Su, Bo-Yuan
    Chu, Sheng-Yuan
    Chen, Yu-Cheng
    Liu, Ssu-Yin
    Chang, Chia-Chiang
    Wu, Chin-Jyi
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2014, 61 (05) : 1403 - 1409
  • [42] Polarization Modulation in Ferroelectric Organic Field-Effect Transistors
    Laudari, A.
    Mazza, A. R.
    Daykin, A.
    Khanra, S.
    Ghosh, K.
    Cummings, F.
    Muller, T.
    Miceli, P. F.
    Guha, S.
    PHYSICAL REVIEW APPLIED, 2018, 10 (01):
  • [43] Temperature Sensors Based on Organic Field-Effect Transistors
    Polena, John
    Afzal, Daniel
    Ngai, Jenner H. L.
    Li, Yuning
    CHEMOSENSORS, 2022, 10 (01)
  • [44] Photostability of Organic Field-Effect Transistors
    Li, Ning
    Lei, Yanlian
    Lau, Ying Suet
    Sui, Xiubao
    Zhu, Furong
    ACS APPLIED NANO MATERIALS, 2023, 6 (14) : 12704 - 12710
  • [45] Functional Organic Field-Effect Transistors
    Guo, Yunlong
    Yu, Gui
    Liu, Yunqi
    ADVANCED MATERIALS, 2010, 22 (40) : 4427 - 4447
  • [46] Nanowire Tunneling Field-Effect Transistors
    Knoch, Joachim
    SEMICONDUCTORS AND SEMIMETALS, VOL 94: SEMICONDUCTOR NANOWIRES II: PROPERTIES AND APPLICATIONS, 2016, 94 : 273 - 295
  • [47] Black phosphorus field-effect transistors
    Li, Likai
    Yu, Yijun
    Ye, Guo Jun
    Ge, Qingqin
    Ou, Xuedong
    Wu, Hua
    Feng, Donglai
    Chen, Xian Hui
    Zhang, Yuanbo
    NATURE NANOTECHNOLOGY, 2014, 9 (05) : 372 - 377
  • [48] Intrinsically stretchable field-effect transistors
    Liang, Jiajie
    Tong, Kwing
    Sun, Huibin
    Pei, Qibing
    MRS BULLETIN, 2017, 42 (02) : 131 - 137
  • [49] Interfaces in Organic Field-Effect Transistors
    Horowitz, Gilles
    ORGANIC ELECTRONICS, 2010, 223 : 113 - 153
  • [50] High Performance RF Sputtering Deposited ZnO Thin-Film Transistors
    Li, Shao-Juan
    Han, Dedong
    Sun, Lei
    Wang, Yi
    Han, Ru-Qi
    Zhan, Shengdong
    PROCEEDINGS OF CHINA DISPLAY/ASIA DISPLAY 2011, 2011, : 393 - 396