A Coarse-to-Fine Framework for Cloud Removal in Remote Sensing Image Sequence

被引:43
作者
Zhang, Yongjun [1 ]
Wen, Fei [1 ]
Gao, Zhi [2 ]
Ling, Xiao [3 ]
机构
[1] Wuhan Univ, Sch Remote Sensing & Informat Engn, Wuhan 430079, Hubei, Peoples R China
[2] Natl Univ Singapore, Temasek Labs, Singapore 117411, Singapore
[3] Singapore ETH Ctr, Future Cites Lab, Singapore, Singapore
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2019年 / 57卷 / 08期
基金
中国国家自然科学基金;
关键词
Cloud and shadow removal; group-sparse; low-rank representation; robust principal component analysis (RPCA); THRESHOLDING ALGORITHM; LOW-RANK;
D O I
10.1109/TGRS.2019.2903594
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Clouds and accompanying shadows, which exist in optical remote sensing images with high possibility, can degrade or even completely occlude certain ground-cover information in images, limiting their applicabilities for Earth observation, change detection, or land-cover classification. In this paper, we aim to deal with cloud contamination problems with the objective of generating cloud-removed remote sensing images. Inspired by low-rank representation together with sparsity constraints, we propose a coarse-to-fine framework for cloud removal in the remote sensing image sequence. Leveraging on group-sparsity constraint, we first decompose the observed cloud image sequence of the same area into the low-rank component, group-sparse outliers, and sparse noise, corresponding to cloud-free landcovers, clouds (and accompanying shadows), and noise respectively. Subsequently, a discriminative robust principal component analysis (RPCA) algorithm is utilized to assign aggressive penalizing weights to the initially detected cloud pixels to facilitate cloud removal and scene restoration. Moreover, we incorporate geometrical transformation into a low-rank model to address the misalignment of the image sequence. Significantly superior to conventional cloud-removal methods, neither cloud-free reference image(s) nor additional operations of cloud and shadow detection are required in our method. Extensive experiments on both simulated data and real data demonstrate that our method works effectively, outperforming many state-of-the-art approaches.
引用
收藏
页码:5963 / 5974
页数:12
相关论文
共 34 条
[1]   SLIC Superpixels Compared to State-of-the-Art Superpixel Methods [J].
Achanta, Radhakrishna ;
Shaji, Appu ;
Smith, Kevin ;
Lucchi, Aurelien ;
Fua, Pascal ;
Suesstrunk, Sabine .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2012, 34 (11) :2274-2281
[2]  
[Anonymous], 2010, 100920105055 ARXIV
[3]   A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems [J].
Beck, Amir ;
Teboulle, Marc .
SIAM JOURNAL ON IMAGING SCIENCES, 2009, 2 (01) :183-202
[4]   Decomposition into low-rank plus additive matrices for background/foreground separation: A review for a comparative evaluation with a large-scale dataset [J].
Bouwmans, Thierry ;
Sobral, Andrews ;
Javed, Sajid ;
Jung, Soon Ki ;
Zahzah, El-Hadi .
COMPUTER SCIENCE REVIEW, 2017, 23 :1-71
[5]   A SINGULAR VALUE THRESHOLDING ALGORITHM FOR MATRIX COMPLETION [J].
Cai, Jian-Feng ;
Candes, Emmanuel J. ;
Shen, Zuowei .
SIAM JOURNAL ON OPTIMIZATION, 2010, 20 (04) :1956-1982
[6]   Robust Principal Component Analysis? [J].
Candes, Emmanuel J. ;
Li, Xiaodong ;
Ma, Yi ;
Wright, John .
JOURNAL OF THE ACM, 2011, 58 (03)
[7]   Spatially and Temporally Weighted Regression: A Novel Method to Produce Continuous Cloud-Free Landsat Imagery [J].
Chen, Bin ;
Huang, Bo ;
Chen, Lifan ;
Xu, Bing .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2017, 55 (01) :27-37
[8]  
Chen F, 2005, INT GEOSCI REMOTE SE, P4256
[9]   A simple and effective method for filling gaps in Landsat ETM plus SLC-off images [J].
Chen, Jin ;
Zhu, Xiaolin ;
Vogelmann, James E. ;
Gao, Feng ;
Jin, Suming .
REMOTE SENSING OF ENVIRONMENT, 2011, 115 (04) :1053-1064
[10]   Cloud removal for remotely sensed images by similar pixel replacement guided with a spatio-temporal MRF model [J].
Cheng, Qing ;
Shen, Huanfeng ;
Zhang, Liangpei ;
Yuan, Qiangqiang ;
Zeng, Chao .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2014, 92 :54-68