Constructing rate 1/p systematic binary quasi-cyclic codes based on the matroid theory

被引:4
作者
Wu, Guangfu [1 ]
Chang, Hsin-Chiu [2 ]
Wang, Lin [1 ]
Truong, T. K. [2 ,3 ]
机构
[1] Xiamen Univ, Coll Informat Sci & Technol, Dept Commun Engn, Xiamen 361005, Fujian Province, Peoples R China
[2] I Shou Univ, Dept Informat Engn, Kaohsiung, Taiwan
[3] Natl Sun Yat Sen Univ, Dept Comp Sci & Engn, Kaohsiung 80424, Taiwan
基金
美国国家科学基金会;
关键词
Matroid theory; Binary quasi-cyclic codes; Minimum distance; Matroid search algorithm;
D O I
10.1007/s10623-012-9715-1
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, rate 1/p binary systematic quasi-cyclic (QC) codes are constructed based on Matroid Theory (MT). The relationship between the generator matrix and minimum distance d is derived through MT, which is benefit to find numbers of QC codes with large minimum distance by our Matroid search algorithm. More than seventy of QC codes that extend previously published results are presented. Among these codes, there are nine codes whose minimum distance is larger than those of the known codes found by Gulliver et al.
引用
收藏
页码:47 / 56
页数:10
相关论文
共 28 条
[1]   Network information flow [J].
Ahlswede, R ;
Cai, N ;
Li, SYR ;
Yeung, RW .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2000, 46 (04) :1204-1216
[2]   The matroid of supports of a linear code [J].
Barg, A .
APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 1997, 8 (02) :165-172
[3]  
BHARGAVA VK, 1978, IEEE T INFORM THEORY, V24, P630, DOI 10.1109/TIT.1978.1055930
[4]   SOME RESULTS ON QUASI-CYCLIC CODES [J].
CHEN, CL ;
PETERSON, WW .
INFORMATION AND CONTROL, 1969, 15 (05) :407-&
[5]  
CHEN Z, 1994, IEEE T INFORM THEORY, V40, P1666
[6]  
Chen Z., 1994, IEEE S INF THEOR NOR
[7]  
Dougherty R, 2007, IEEE T INFORM THEORY, V53, P1949, DOI [10.1109/TIT.2007.896862, 10.1109/T1T.2007.896862]
[8]   TRANSVERSALS AND MATROID PARTITION [J].
EDMONDS, J ;
FULKERSO.DR .
JOURNAL OF RESEARCH OF THE NATIONAL BUREAU OF STANDARDS SECTION B-MATHEMATICAL SCIENCES, 1965, B 69 (03) :147-+
[9]   Using linear programming to decode binary linear codes [J].
Feldman, J ;
Wainwright, MJ ;
Karger, DR .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (03) :954-972
[10]  
Geelen J., 2007, COMBINATORICS COMPLE