DISCRIMINATION OF TASK-RELATED EEG SIGNALS USING DIFFUSION ADAPTATION AND S-TRANSFORM COHERENCY

被引:0
|
作者
Eftaxias, Konstantinos [1 ]
Sanei, Saeid [1 ]
机构
[1] Univ Surrey, Fac Engn & Phys Sci, Guildford, Surrey, England
来源
2014 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP) | 2014年
关键词
Diffusion adaptation; brain connectivity; S-transform; diffusion Kalman filtering;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This work presents a novel approach for discriminating complex mental and motor tasks using diffusion adaptation and brain connectivity measures. In particular, in this paper, we use a S-transform based measure to estimate the connectivity on single-trial basis and diffusion Kalman filtering to train a model that can classify different tasks. The superiority of the method is proven when compared with solutions that don't rely on cooperation.
引用
收藏
页数:6
相关论文
empty
未找到相关数据