Magnetic properties of core-shell catalyst nanoparticles for carbon nanotube growth

被引:59
作者
Fleaca, C. T. [1 ]
Morjan, I. [1 ]
Alexandrescu, R. [1 ]
Dumitrache, F. [1 ]
Soare, I. [1 ]
Gavrila-Florescu, L. [1 ]
Le Normand, F. [2 ]
Derory, A. [2 ]
机构
[1] NILPRP, R-077125 Bucharest, Romania
[2] Inst Phys & Chim Mat Strasbourg, CNRS, UMR 7504, F-67034 Strasbourg 2, France
关键词
Laser pyrolysis; Core-shell nanoparticles; Superparamagnetism; Coercivity; HF PE CCVD; Oriented carbon nanotubes; GAMMA-FE2O3; NANOPARTICLES;
D O I
10.1016/j.apsusc.2008.10.078
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Two types of core-shell nanoparticles have been prepared by laser pyrolysis using Fe(CO)(5) and C2H2 or [(CH3)(3)Si](2)O as precursors and C2H4 as sensitizer. The first type (about 4 nm diameter)-produced by the decomposition of Fe(CO)(5) in the presence of C2H4 and C2H2-consists of Fe cores protected by graphenic layers. The second type (mean particle size of about 14 nm) consists also of Fe cores, yet covered by few nm thick gamma-Fe2O3/porous polycarbosiloxane shells resulted from the [(CH3)(3)Si](2)O decomposition and superficial oxidation after air exposure. The hysteresis loops suggest a room temperature superparamagnetic behavior of the Fe-C nanopowder and a weak ferromagnetic one for larger particles in the Fe-Fe2O3-polymer sample. Both types of nanoparticles were finally used as a catalyst for the carbon nanotube growth by seeding Si(100) substrates via drop-casting method. CNTs were grown by Hot-Filament Direct. Current PE CVD technique from C2H2 and H-2 at 980 K. It is suggested that the increased density and orientation degree observed for the multiwall nanotubes grown from Fe-Fe2O3-polymer nanoparticles could be due to their magnetic behavior and surface composition. (C) 2008 Elsevier B. V. All rights reserved.
引用
收藏
页码:5386 / 5390
页数:5
相关论文
共 15 条
  • [1] Carbon nanotube synthesis using colloidal solution of metal nanoparticles
    Ago, H
    Ohshima, S
    Uchida, K
    Komatsu, T
    Yumura, M
    [J]. PHYSICA B-CONDENSED MATTER, 2002, 323 (1-4) : 306 - 307
  • [2] CAISER C, 2003, ANN PHYS, V12, P105
  • [3] Low-temperature magnetic properties of nanometric Fe-based particles
    David, B.
    Schneeweiss, O.
    Santava, E.
    Alexandrescu, R.
    Morjan, I.
    [J]. ACTA PHYSICA POLONICA A, 2008, 113 (01) : 561 - 564
  • [4] Dormann JL, 1997, ADV CHEM PHYS, V98, P283, DOI 10.1002/9780470141571.ch4
  • [5] Nearly monodispersed carbon coated iron nanoparticles for the catalytic growth of nanotubes/nanofibres
    Dumitrache, F
    Morjan, I
    Alexandrescu, R
    Morjan, RE
    Voicu, I
    Sandu, I
    Soare, I
    Ploscaru, M
    Fleaca, C
    Ciupina, V
    Prodan, G
    Rand, B
    Brydson, R
    Woodword, A
    [J]. DIAMOND AND RELATED MATERIALS, 2004, 13 (02) : 362 - 370
  • [6] Catalyzed growth of oriented carbon nanotubes using Fe-organosilicon core-shell nanoparticles
    Fleaca, C. T.
    Morian, I.
    Alexandrescu, R.
    Dumitrache, F.
    Soare, I.
    Gavrila-Florescu, L.
    Le Normand, F.
    Ersen, O.
    [J]. PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2008, 40 (07) : 2252 - 2256
  • [7] JACOBS IS, 1963, MAGNETISM, V3, P27
  • [8] Magnetic properties of γ-Fe2O3 nanoparticles made by coprecipitation method
    Jeong, JR
    Lee, SJ
    Kim, JD
    Shin, SC
    [J]. PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2004, 241 (07): : 1593 - 1596
  • [9] Aerosol synthesis and growth mechanism of magnetic iron nanoparticles
    Kim, D.
    Vasilieva, E. S.
    Nasibulin, A. G.
    Lee, D. W.
    Tolochko, O. V.
    Kim, B. K.
    [J]. PROGRESS IN POWDER METALLURGY, PTS 1 AND 2, 2007, 534-536 : 9 - +
  • [10] Lipert K, 2007, MATER SCI-POLAND, V25, P399