Magnetic properties of core-shell catalyst nanoparticles for carbon nanotube growth

被引:60
作者
Fleaca, C. T. [1 ]
Morjan, I. [1 ]
Alexandrescu, R. [1 ]
Dumitrache, F. [1 ]
Soare, I. [1 ]
Gavrila-Florescu, L. [1 ]
Le Normand, F. [2 ]
Derory, A. [2 ]
机构
[1] NILPRP, R-077125 Bucharest, Romania
[2] Inst Phys & Chim Mat Strasbourg, CNRS, UMR 7504, F-67034 Strasbourg 2, France
关键词
Laser pyrolysis; Core-shell nanoparticles; Superparamagnetism; Coercivity; HF PE CCVD; Oriented carbon nanotubes; GAMMA-FE2O3; NANOPARTICLES;
D O I
10.1016/j.apsusc.2008.10.078
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Two types of core-shell nanoparticles have been prepared by laser pyrolysis using Fe(CO)(5) and C2H2 or [(CH3)(3)Si](2)O as precursors and C2H4 as sensitizer. The first type (about 4 nm diameter)-produced by the decomposition of Fe(CO)(5) in the presence of C2H4 and C2H2-consists of Fe cores protected by graphenic layers. The second type (mean particle size of about 14 nm) consists also of Fe cores, yet covered by few nm thick gamma-Fe2O3/porous polycarbosiloxane shells resulted from the [(CH3)(3)Si](2)O decomposition and superficial oxidation after air exposure. The hysteresis loops suggest a room temperature superparamagnetic behavior of the Fe-C nanopowder and a weak ferromagnetic one for larger particles in the Fe-Fe2O3-polymer sample. Both types of nanoparticles were finally used as a catalyst for the carbon nanotube growth by seeding Si(100) substrates via drop-casting method. CNTs were grown by Hot-Filament Direct. Current PE CVD technique from C2H2 and H-2 at 980 K. It is suggested that the increased density and orientation degree observed for the multiwall nanotubes grown from Fe-Fe2O3-polymer nanoparticles could be due to their magnetic behavior and surface composition. (C) 2008 Elsevier B. V. All rights reserved.
引用
收藏
页码:5386 / 5390
页数:5
相关论文
共 15 条
[1]   Carbon nanotube synthesis using colloidal solution of metal nanoparticles [J].
Ago, H ;
Ohshima, S ;
Uchida, K ;
Komatsu, T ;
Yumura, M .
PHYSICA B-CONDENSED MATTER, 2002, 323 (1-4) :306-307
[2]  
CAISER C, 2003, ANN PHYS, V12, P105
[3]   Low-temperature magnetic properties of nanometric Fe-based particles [J].
David, B. ;
Schneeweiss, O. ;
Santava, E. ;
Alexandrescu, R. ;
Morjan, I. .
ACTA PHYSICA POLONICA A, 2008, 113 (01) :561-564
[4]  
Dormann JL, 1997, ADV CHEM PHYS, V98, P283, DOI 10.1002/9780470141571.ch4
[5]   Nearly monodispersed carbon coated iron nanoparticles for the catalytic growth of nanotubes/nanofibres [J].
Dumitrache, F ;
Morjan, I ;
Alexandrescu, R ;
Morjan, RE ;
Voicu, I ;
Sandu, I ;
Soare, I ;
Ploscaru, M ;
Fleaca, C ;
Ciupina, V ;
Prodan, G ;
Rand, B ;
Brydson, R ;
Woodword, A .
DIAMOND AND RELATED MATERIALS, 2004, 13 (02) :362-370
[6]   Catalyzed growth of oriented carbon nanotubes using Fe-organosilicon core-shell nanoparticles [J].
Fleaca, C. T. ;
Morian, I. ;
Alexandrescu, R. ;
Dumitrache, F. ;
Soare, I. ;
Gavrila-Florescu, L. ;
Le Normand, F. ;
Ersen, O. .
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2008, 40 (07) :2252-2256
[7]  
JACOBS IS, 1963, MAGNETISM, V3, P27
[8]   Magnetic properties of γ-Fe2O3 nanoparticles made by coprecipitation method [J].
Jeong, JR ;
Lee, SJ ;
Kim, JD ;
Shin, SC .
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2004, 241 (07) :1593-1596
[9]   Aerosol synthesis and growth mechanism of magnetic iron nanoparticles [J].
Kim, D. ;
Vasilieva, E. S. ;
Nasibulin, A. G. ;
Lee, D. W. ;
Tolochko, O. V. ;
Kim, B. K. .
PROGRESS IN POWDER METALLURGY, PTS 1 AND 2, 2007, 534-536 :9-+
[10]  
Lipert K, 2007, MATER SCI-POLAND, V25, P399