Parameters Identification of Nonlinear DC Motor Model Using Compound Evolution Algorithms

被引:0
|
作者
Cong, Shuang [1 ]
Li, Guodong [1 ]
Feng, Xianyong [1 ]
机构
[1] Univ Sci & Technol China, Dept Automat, Hefei 230027, Peoples R China
基金
美国国家科学基金会;
关键词
genetic algorithms; simplex method; global optimization; parameters identification; nonlinear friction; GENETIC ALGORITHM;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The genetic algorithms (GA) with global optimization character and the simplex method are combined and used into the application of the parameter identification. The nonlinear dynamic model of an actual DC motor including the nonlinear friction torque is established. By means of the compound evolution algorithms proposed, the detail procedure of the all parameters identification in the DC motor with actual system's input-output data are given. The effectiveness of identification is verified by the comparison between actual system values and model's in the different situations including the motor running in the dead zone, saturated zone and linear zone, respectively.
引用
收藏
页码:15 / 20
页数:6
相关论文
共 50 条
  • [1] A method of identification of DC motor parameters using computer
    Dlugosz, Marek
    Lerch, Tomasz
    PRZEGLAD ELEKTROTECHNICZNY, 2010, 86 (02): : 34 - 38
  • [2] Nonlinear Model for a dc Motor-Thyristor Converter Group; Nonlinear Identification of Model Parameters Independent of the Operating Point.
    Zanne, C.
    El-Hefnawy, A.
    Louis, J.P.
    1600, (09):
  • [3] Identification of induction motor parameters using genetic algorithms
    Lara Antonelli, Sofia
    Daniel Donolo, Pablo
    Martin Pezzani, Carlos
    Ciro Quispe, Enrique
    Hernan De Angelo, Cristian
    2023 IEEE WORKSHOP ON POWER ELECTRONICS AND POWER QUALITY APPLICATIONS, PEPQA, 2023,
  • [4] Nonlinear system identification for a DC motor using NARMAX approach
    Rahim, NA
    Taib, MN
    Yusof, MI
    SENSORS: ASIASENSE 2003 - ASIAN CONFERENCE ON SENSORS, 2003, : 305 - 311
  • [5] DC MOTOR MODEL PARAMETERS
    LORD, W
    HWANG, JH
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS AND CONTROL INSTRUMENTATION, 1976, 23 (03): : 335 - 337
  • [6] Nonlinear parametric model identification using genetic algorithms
    Pedroso-Rodriguez, LM
    Marrero, A
    de Arazoza, H
    ARTIFICIAL NEURAL NETS PROBLEM SOLVING METHODS, PT II, 2003, 2687 : 473 - 480
  • [7] Parameters Identification of a Brushless DC Motor by Specification
    Al-Mahturi, Fuad Sh.
    Samokhvalov, Dmitry V.
    Bida, Vladislav M.
    PROCEEDINGS OF THE 2018 IEEE CONFERENCE OF RUSSIAN YOUNG RESEARCHERS IN ELECTRICAL AND ELECTRONIC ENGINEERING (EICONRUS), 2018, : 558 - 561
  • [8] Parameter identification of induction motor model using genetic algorithms
    Alonge, F
    D'Ippolito, F
    Ferrante, G
    Raimondi, FM
    IEE PROCEEDINGS-CONTROL THEORY AND APPLICATIONS, 1998, 145 (06): : 587 - 593
  • [9] DC Motor Parameters Identification and Sensorless Torque Estimation Using Fuzzy PID
    Liem, D. T.
    Ahn, K. K.
    2012 12TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND SYSTEMS (ICCAS), 2012, : 76 - 81
  • [10] Identification of DC Motor Parameters Using Method of Dynamic Regressor Extension and Mixing
    Nguyen, Tung K.
    Vlasov, Sergey M.
    Margun, Alexey A.
    Kirsanova, Aleksandra S.
    2021 29TH MEDITERRANEAN CONFERENCE ON CONTROL AND AUTOMATION (MED), 2021, : 718 - 722