Molecular and Physiological Responses of Rice and Weedy Rice to Heat and Drought Stress

被引:30
|
作者
Piveta, Leonard Bonilha [1 ]
Roma-Burgos, Nilda [2 ]
Noldin, Jose Alberto [3 ]
Viana, Vivian Ebeling [1 ]
Oliveira, Claudia de [1 ]
Lamego, Fabiane Pinto [4 ]
Avila, Luis Antonio de [1 ]
机构
[1] Univ Fed Pelotas, Programa Posgrad Fitossanidade, Crop Protect Grad Program, BR-96160000 Pelotas, RS, Brazil
[2] Univ Arkansas, Dept Crop Soil & Environm Sci, Fayetteville, AR 72704 USA
[3] Epagri Itajai Expt Stn, BR-88318112 Itajai, SC, Brazil
[4] Embrapa Pecuaria Sul, BR-96401970 Bage, RS, Brazil
来源
AGRICULTURE-BASEL | 2021年 / 11卷 / 01期
关键词
genetic diversity; photosynthesis; heat shock proteins; SHOCK PROTEINS; TRANSCRIPTION FACTORS; ABIOTIC STRESS; CHLOROPHYLL METER; HIGH-TEMPERATURE; GENE-EXPRESSION; HSF FAMILY; RED RICE; ARABIDOPSIS; TOLERANCE;
D O I
10.3390/agriculture11010009
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Rice is the staple food for about half of the world population. Rice grain yield and quality are affected by climatic changes. Arguably, rice cultivars' genetic diversity is diminished from decades of breeding using narrow germplasm, requiring introgressions from other Oryza species, weedy or wild. Weedy rice has high genetic diversity, which is an essential resource for rice crop improvement. Here, we analyzed the phenotypic, physiological, and molecular profiles of two rice cultivars (IRGA 424 and SCS119 Rubi) and five weedy rice (WR), from five different Brazilian regions, in response to heat and drought stress. Drought and heat stress affected the phenotype and photosynthetic parameters in different ways in rice and WR genotypes. A WR from Northern Brazil yielded better under heat stress than the non-stressed check. Drought stress upregulated HSF7A while heat stress upregulated HSF2a. HSP74.8, HSP80.2, and HSP24.1 were upregulated in both conditions. Based on all evaluated traits, we hypothesized that in drought conditions increasing HSFA7 expression is related to tiller number and that increase WUE (water use efficiency) and HSFA2a expression are associated with yield. In heat conditions, G(s) (stomatal conductance) and E's increases may be related to plant height; tiller number is inversely associated with HSPs expression, and chlorophyll content and C-i (intercellular CO2 concentration) may be related to yield. Based on morphology, physiology, and gene regulation in heat and drought stress, we can discriminate genotypes that perform well under these stress conditions and utilize such genotypes as a source of genetic diversity for rice breeding.
引用
收藏
页码:1 / 23
页数:21
相关论文
共 50 条
  • [31] PHYSIOLOGICAL AND BIOCHEMICAL RESPONSES OF RICE (ORYZA SATIVA L.) VARIETIES AGAINST DROUGHT STRESS
    Kuru, I. B. R. A. H. I. M. SELcUK
    Isikalan, Cigdem
    AkbaS, Filiz
    BANGLADESH JOURNAL OF BOTANY, 2021, 50 (02): : 335 - 342
  • [32] Physiological and molecular responses to drought in Petunia: the importance of stress severity
    Kim, Jongyun
    Malladi, Anish
    van Iersel, Marc W.
    JOURNAL OF EXPERIMENTAL BOTANY, 2012, 63 (18) : 6335 - 6345
  • [33] Comparison of Drought Stress Responses in Large- and Small-Rooted Rice Lines: Physiological, Anatomical, and Hormonal Changes
    Guo, Yao
    Du, Yunfeng
    Niu, Xinze
    Ma, Yunjing
    Song, Guoqing
    Cao, Cougui
    Li, Ping
    Chen, Yinglong
    Siddique, Kadambot H. M.
    JOURNAL OF PLANT GROWTH REGULATION, 2024, 43 (08) : 2922 - 2936
  • [34] Metabolic responses of rice source and sink organs during recovery from combined drought and heat stress in the field
    Lawas, Lovely Mae F.
    Erban, Alexander
    Kopka, Joachim
    Jagadish, S. V. Krishna
    Zuther, Ellen
    Hincha, Dirk K.
    GIGASCIENCE, 2019, 8 (08):
  • [35] Predicting transcriptional responses to heat and drought stress from genomic features using a machine learning approach in rice
    Smet, Dajo
    Opdebeeck, Helder
    Vandepoele, Klaas
    FRONTIERS IN PLANT SCIENCE, 2023, 14
  • [36] Weedy rice in sustainable rice production
    Nadir, Sadia
    Xiong, Hai-Bo
    Zhu, Qian
    Zhang, Xiao-Ling
    Xu, Hong-Yun
    Li, Juan
    Dongchen, Wenhua
    Henry, Doku
    Guo, Xiao-Qiong
    Khan, Sehroon
    Suh, Hak-Soo
    Lee, Dong Sun
    Chen, Li-Juan
    AGRONOMY FOR SUSTAINABLE DEVELOPMENT, 2017, 37 (05)
  • [37] Biochemical, physiological and molecular responses of rice to terminal drought stress: transcriptome profiling of leaf and root reveals the key stress-responsive genes
    Tyagi, Aruna
    Kumar, Suresh
    Mohapatra, Trilochan
    JOURNAL OF PLANT BIOCHEMISTRY AND BIOTECHNOLOGY, 2023, 34 (1) : 191 - 210
  • [38] Physiological and molecular insights on wheat responses to heat stress
    Lal, Milan Kumar
    Tiwari, Rahul Kumar
    Gahlaut, Vijay
    Mangal, Vikas
    Kumar, Awadhesh
    Singh, Madan Pal
    Paul, Vijay
    Kumar, Sudhir
    Singh, Brajesh
    Zinta, Gaurav
    PLANT CELL REPORTS, 2022, 41 (03) : 501 - 518
  • [39] Evaluation of Iraqi Rice Cultivars for Their Tolerance to Drought Stress
    Al Azzawi, Tiba Nazar Ibrahim
    Khan, Murtaza
    Hussain, Adil
    Shahid, Muhammad
    Imran, Qari Muhammad
    Mun, Bong-Gyu
    Lee, Sang-Uk
    Yun, Byung-Wook
    AGRONOMY-BASEL, 2020, 10 (11):
  • [40] Morphological, transcriptomic and proteomic responses of contrasting rice genotypes towards drought stress
    Anupama, Anupama
    Bhugra, Swati
    Lall, Brejesh
    Chaudhury, Santanu
    Chugh, Archana
    ENVIRONMENTAL AND EXPERIMENTAL BOTANY, 2019, 166