Orbifold Riemann surfaces and geodesic algebras

被引:11
作者
Chekhov, L. O. [1 ,2 ,3 ]
机构
[1] VA Steklov Math Inst, Moscow 117333, Russia
[2] Inst Theoret & Expt Phys, Moscow, Russia
[3] Poncelet Laboratoire Int Francorusse, Moscow, Russia
基金
英国工程与自然科学研究理事会; 俄罗斯基础研究基金会;
关键词
D O I
10.1088/1751-8113/42/30/304007
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the Teichmuller theory of Riemann surfaces with orbifold points of order 2 using the fat graph technique. The previously developed technique of quantization, classical and quantum mapping-class group transformations, and Poisson and quantum algebras of geodesic functions is applicable to the surfaces with orbifold points. We describe classical and quantum braid group relations for particular sets of geodesic functions corresponding to An and D-n algebras and describe their central elements for the Poisson and quantum algebras.
引用
收藏
页数:32
相关论文
共 29 条
[1]  
[Anonymous], P STEKLOV I MATH
[2]  
Bonahon F., 1996, Ann. Fac. Sci. Toulouse Math., V5, P233
[3]  
BONDAL A, 2000, IHESM0002
[4]  
CHEKHOV L, 1997, ST PET M SEL TOP MAT
[5]   Teichmuller Theory of Bordered Surfaces [J].
Chekhov, Leonid O. .
SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2007, 3
[6]   Observables in 3D gravity and geodesic algebras [J].
Chekhov, LO ;
Fock, VV .
CZECHOSLOVAK JOURNAL OF PHYSICS, 2000, 50 (11) :1201-1208
[7]  
CHEKHOV LO, IRMA LECT MATH PHYS, V11, P579
[8]  
CHEKHOV LO, NEW POISSON AL UNPUB
[9]  
CHEKHOV LO, 2009, P STEKLOV M IN PRESS
[10]   Monodromy of certain Painleve-VI transcendents and reflection groups [J].
Dubrovin, B ;
Mazzocco, M .
INVENTIONES MATHEMATICAE, 2000, 141 (01) :55-147