Linear latent structure analysis and modelling of multiple categorical variables

被引:2
|
作者
Akushevich, I. [1 ]
Kovtun, M. [1 ]
Manton, K. G. [1 ]
Yashin, A. I. [1 ]
机构
[1] Duke Univ, Durham, NC 27710 USA
关键词
latent structure analysis; grade of membership; population heterogeneity; mortality; NLTCS data; disability; simulation studies; MEMBERSHIP; HEALTH; GRADE; MORTALITY;
D O I
10.1080/17486700802259798
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Linear latent structure analysis is a new approach for investigation of population heterogeneity using high-dimensional categorical data. In this approach, the population is represented by a distribution of latent vectors, which play the role of heterogeneity variables, and individual characteristics are represented by the expectation of this vector conditional on individual response patterns. Results of the computer experiments demonstrating a good quality of reconstruction of model parameters are described. The heterogeneity distribution estimated from 1999 National Long Term Care Survey (NLTCS) is discussed. A predictive power of the heterogeneity scores on mortality is analysed using vital statistics data linked to NLTCS.
引用
收藏
页码:203 / 218
页数:16
相关论文
共 50 条
  • [31] MULTIPLE IMPUTATION FOR CATEGORICAL VARIABLES IN MULTILEVEL DATA
    Kottage, Helani Dilshara
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2022, 106 (02) : 349 - 350
  • [32] Visualising and modelling changes in categorical variables in longitudinal studies
    Jones, Mark
    Hockey, Richard
    Mishra, Gita D.
    Dobson, Annette
    BMC MEDICAL RESEARCH METHODOLOGY, 2014, 14
  • [33] A novel method for modelling interaction between categorical variables
    te Grotenhuis, Manfred
    Pelzer, Ben
    Eisinga, Rob
    Nieuwenhuis, Rense
    Schmidt-Catran, Alexander
    Konig, Ruben
    INTERNATIONAL JOURNAL OF PUBLIC HEALTH, 2017, 62 (03) : 427 - 431
  • [34] Visualising and modelling changes in categorical variables in longitudinal studies
    Mark Jones
    Richard Hockey
    Gita D Mishra
    Annette Dobson
    BMC Medical Research Methodology, 14
  • [35] A methodology for measuring latent variables based on multiple factor analysis
    Lautre, IG
    Fernández, EA
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2004, 45 (03) : 505 - 517
  • [36] Dementia Has a Categorical, Not Dimensional, Latent Structure
    Gavett, Brandon E.
    Stern, Robert A.
    PSYCHOLOGY AND AGING, 2012, 27 (03) : 791 - 797
  • [37] LINEAR STRUCTURAL EQUATIONS WITH LATENT VARIABLES
    Satyanarayana
    Ismail, B.
    INTERNATIONAL JOURNAL OF AGRICULTURAL AND STATISTICAL SCIENCES, 2021, 17 (01): : 293 - 300
  • [38] ROW AND COLUMN MATRICES IN MULTIPLE CORRESPONDENCE ANALYSIS WITH ORDERED CATEGORICAL AND DICHOTOMOUS VARIABLES
    Thanoon, Thanoon Y.
    Adnan, Robiah
    JURNAL TEKNOLOGI, 2016, 78 (02): : 149 - 156
  • [39] Generalized data-fitting factor analysis with multiple quantification of categorical variables
    Makino, Naomichi
    COMPUTATIONAL STATISTICS, 2015, 30 (01) : 279 - 292
  • [40] Generalized data-fitting factor analysis with multiple quantification of categorical variables
    Naomichi Makino
    Computational Statistics, 2015, 30 : 279 - 292