Membrane duality revisited

被引:16
作者
Duff, M. J. [1 ]
Lu, J. X. [2 ]
Percacci, R. [3 ,4 ]
Pope, C. N. [5 ,6 ]
Samtleben, H. [7 ,8 ]
Sezgin, E. [5 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Theoret Phys, London SW7 2AZ, England
[2] Univ Sci & Technol China, Interdisciplinary Ctr Theoret Study, Hefei 230026, Anhui, Peoples R China
[3] SISSA, I-34014 Trieste, Italy
[4] Ist Nazl Fis Nucl, Sez Trieste, Trieste, Italy
[5] Texas A&M Univ, George P & Cynthia W Mitchell Inst Fundamental Ph, College Stn, TX 77843 USA
[6] Univ Cambridge, Ctr Math Sci, DAMTP, Cambridge CB3 OWA, England
[7] Univ Lyon, Lab Phys, CNRS, UMR 5672, F-69364 Lyon 07, France
[8] Ecole Normale Super Lyon, F-69364 Lyon 07, France
基金
美国国家科学基金会;
关键词
TARGET-SPACE DUALITY; SYMMETRIES; ROTATIONS; SUPERMEMBRANES; SUPERGRAVITY;
D O I
10.1016/j.nuclphysb.2015.10.003
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
Just as string T-duality originates from transforming field equations into Bianchi identities on the string worldsheet, so it has been suggested that M-theory U-dualities originate from transforming field equations into Bianchi identities on the membrane worldvolume. However, this encounters a problem unless the target space has dimension D = p + 1. We identify the problem to be the nonintegrability of the U-duality transformation assigned to the pull-back map. Just as a double geometry renders manifest the 0(D, D) string T-duality, here we show in the case of the M2-brane in D = 3 that a generalized geometry renders manifest the SL(3) x SL(2) U-duality. In the case of M2-brane in D=4, with and without extra target space coordinates, we show that only the GL(4, R) x R-4 subgroup of the expected SL(5, R) U-duality symmetry is realized. (C) 2015 The Authors. Published by Elsevier B.V.
引用
收藏
页码:1 / 21
页数:21
相关论文
共 50 条
  • [31] Duality in quantum transport models
    Frassek, Rouven
    Giardina, Cristian
    Kurchan, Jorge
    SCIPOST PHYSICS, 2021, 10 (06):
  • [32] Duality for Stochastic Models of Transport
    Carinci, Gioia
    Giardina, Cristian
    Giberti, Claudio
    Redig, Frank
    JOURNAL OF STATISTICAL PHYSICS, 2013, 152 (04) : 657 - 697
  • [33] Introduction to Gauge/Gravity Duality
    Polchinski, Joseph
    STRING THEORY AND ITS APPLICATIONS: FROM MEV TO THE PLANCK SCALE, TASI 2010, 2010, : 3 - 45
  • [34] Duality invariance and higher derivatives
    Eloy, Camille
    Hohm, Olaf
    Samtleben, Henning
    PHYSICAL REVIEW D, 2020, 101 (12):
  • [35] Stochastic Duality and Orthogonal Polynomials
    Franceschini, Chiara
    Giardina, Cristian
    SOJOURNS IN PROBABILITY THEORY AND STATISTICAL PHYSICS - III: INTERACTING PARTICLE SYSTEMS AND RANDOM WALKS, A FESTSCHRIFT FOR CHARLES M. NEWMAN, 2019, 300 : 187 - 214
  • [36] Hodge duality and cosmological constant
    Nishino, H
    Rajpoot, S
    MODERN PHYSICS LETTERS A, 2006, 21 (02) : 127 - 141
  • [37] Duality invariant self-interactions of abelian p-forms in arbitrary dimensions
    Buratti, Ginevra
    Lechner, Kurt
    Melotti, Luca
    JOURNAL OF HIGH ENERGY PHYSICS, 2019, 2019 (09)
  • [38] Black hole singularity resolution in D=2 via duality-invariant α' corrections
    Codina, Tomas
    Hohm, Olaf
    Zwiebach, Barton
    PHYSICAL REVIEW D, 2023, 108 (12)
  • [39] Reconstruction of Type II Supergravities via O(d) x O(d) Duality Invariants
    Hyakutake, Yoshifumi
    Maeyama, Kiyoto
    UNIVERSE, 2024, 10 (01)
  • [40] String solitons and T-duality
    Bergshoeff, Eric A.
    Riccioni, Fabio
    JOURNAL OF HIGH ENERGY PHYSICS, 2011, (05):