Collecting and Analyzing Multidimensional Data with Local Differential Privacy

被引:232
|
作者
Wang, Ning [1 ]
Xiao, Xiaokui [2 ]
Yang, Yin [3 ]
Zhao, Jun [4 ]
Hui, Siu Cheung [4 ]
Shin, Hyejin [5 ]
Shin, Junbum [5 ]
Yu, Ge [6 ]
机构
[1] Ocean Univ China, Sch Informat Sci & Engn, Qingdao, Shandong, Peoples R China
[2] Natl Univ Singapore, Sch Comp, Singapore, Singapore
[3] Hamad Bin Khalifa Univ, Div Informat & Comp Techol, Coll Sci & Engn, Doha, Qatar
[4] Nanyang Technol Univ, Sch Comp Sci & Engn, Singapore, Singapore
[5] Samsung Elect, Samsung Res, Seoul, South Korea
[6] Northeastern Univ, Sch Comp Sci & Engn, Shenyang, Liaoning, Peoples R China
来源
2019 IEEE 35TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE 2019) | 2019年
基金
中国国家自然科学基金; 新加坡国家研究基金会;
关键词
Local differential privacy; multidimensional data; stochastic gradient descent; NOISE;
D O I
10.1109/ICDE.2019.00063
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Local differential privacy (LDP) is a recently proposed privacy standard for collecting and analyzing data, which has been used, e.g., in the Chrome browser, iOS and macOS. In LDP, each user perturbs her information locally, and only sends the randomized version to an aggregator who performs analyses, which protects both the users and the aggregator against private information leaks. Although LDP has attracted much research attention in recent years, the majority of existing work focuses on applying LDP to complex data and/or analysis tasks. In this paper, we point out that the fundamental problem of collecting multidimensional data under LDP has not been addressed sufficiently, and there remains much room for improvement even for basic tasks such as computing the mean value over a single numeric attribute under LDP. Motivated by this, we first propose novel LDP mechanisms for collecting a numeric attribute, whose accuracy is at least no worse (and usually better) than existing solutions in terms of worst-case noise variance. Then, we extend these mechanisms to multidimensional data that can contain both numeric and categorical attributes, where our mechanisms always outperform existing solutions regarding worst-case noise variance. As a case study, we apply our solutions to build an LDP-compliant stochastic gradient descent algorithm (SGD), which powers many important machine learning tasks. Experiments using real datasets confirm the effectiveness of our methods, and their advantages over existing solutions.
引用
收藏
页码:638 / 649
页数:12
相关论文
共 50 条
  • [31] Local Differential Privacy for correlated location data release in ITS
    Chong, Kah Meng
    Malip, Amizah
    COMPUTER NETWORKS, 2024, 255
  • [32] SPoFC: A framework for stream data aggregation with local differential privacy
    Yang, Mengmeng
    Lam, Kwok-Yan
    Zhu, Tianqing
    Tang, Chenghua
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2023, 35 (05)
  • [33] Adaptive personalized privacy-preserving data collection scheme with local differential privacy
    Song, Haina
    Shen, Hua
    Zhao, Nan
    He, Zhangqing
    Xiong, Wei
    Wu, Minghu
    Zhang, Mingwu
    JOURNAL OF KING SAUD UNIVERSITY-COMPUTER AND INFORMATION SCIENCES, 2024, 36 (04)
  • [34] Genomic Data Sharing under Dependent Local Differential Privacy
    Yilmaz, Emre
    Ji, Tianxi
    Ayday, Erman
    Li, Pan
    CODASPY'22: PROCEEDINGS OF THE TWELVETH ACM CONFERENCE ON DATA AND APPLICATION SECURITY AND PRIVACY, 2022, : 77 - 88
  • [35] Privacy at Scale: Local Differential Privacy in Practice
    Cormode, Graham
    Jha, Somesh
    Kulkarni, Tejas
    Li, Ninghui
    Srivastava, Divesh
    Wang, Tianhao
    SIGMOD'18: PROCEEDINGS OF THE 2018 INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, 2018, : 1655 - 1658
  • [36] Survey on Local Differential Privacy
    Ye Q.-Q.
    Meng X.-F.
    Zhu M.-J.
    Huo Z.
    Ruan Jian Xue Bao/Journal of Software, 2018, 29 (07): : 1981 - 2005
  • [37] EFFICIENCY IN LOCAL DIFFERENTIAL PRIVACY
    Steinberger, Lukas
    ANNALS OF STATISTICS, 2024, 52 (05) : 2139 - 2166
  • [38] Differential Privacy in the Local Setting
    Li, Ninghui
    IWSPA '18: PROCEEDINGS OF THE FOURTH ACM INTERNATIONAL WORKSHOP ON SECURITY AND PRIVACY ANALYTICS, 2018, : 42 - 42
  • [39] ON ROBUSTNESS AND LOCAL DIFFERENTIAL PRIVACY
    Li, Mengchu
    Berrett, Thomas B.
    Yu, Yi
    ANNALS OF STATISTICS, 2023, 51 (02) : 717 - 737
  • [40] Local differential privacy federated learning based on heterogeneous data multi-privacy mechanism
    Wang, Jie
    Zhang, Zhiju
    Tian, Jing
    Li, Hongtao
    COMPUTER NETWORKS, 2024, 254