Collecting and Analyzing Multidimensional Data with Local Differential Privacy

被引:232
|
作者
Wang, Ning [1 ]
Xiao, Xiaokui [2 ]
Yang, Yin [3 ]
Zhao, Jun [4 ]
Hui, Siu Cheung [4 ]
Shin, Hyejin [5 ]
Shin, Junbum [5 ]
Yu, Ge [6 ]
机构
[1] Ocean Univ China, Sch Informat Sci & Engn, Qingdao, Shandong, Peoples R China
[2] Natl Univ Singapore, Sch Comp, Singapore, Singapore
[3] Hamad Bin Khalifa Univ, Div Informat & Comp Techol, Coll Sci & Engn, Doha, Qatar
[4] Nanyang Technol Univ, Sch Comp Sci & Engn, Singapore, Singapore
[5] Samsung Elect, Samsung Res, Seoul, South Korea
[6] Northeastern Univ, Sch Comp Sci & Engn, Shenyang, Liaoning, Peoples R China
来源
2019 IEEE 35TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE 2019) | 2019年
基金
中国国家自然科学基金; 新加坡国家研究基金会;
关键词
Local differential privacy; multidimensional data; stochastic gradient descent; NOISE;
D O I
10.1109/ICDE.2019.00063
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Local differential privacy (LDP) is a recently proposed privacy standard for collecting and analyzing data, which has been used, e.g., in the Chrome browser, iOS and macOS. In LDP, each user perturbs her information locally, and only sends the randomized version to an aggregator who performs analyses, which protects both the users and the aggregator against private information leaks. Although LDP has attracted much research attention in recent years, the majority of existing work focuses on applying LDP to complex data and/or analysis tasks. In this paper, we point out that the fundamental problem of collecting multidimensional data under LDP has not been addressed sufficiently, and there remains much room for improvement even for basic tasks such as computing the mean value over a single numeric attribute under LDP. Motivated by this, we first propose novel LDP mechanisms for collecting a numeric attribute, whose accuracy is at least no worse (and usually better) than existing solutions in terms of worst-case noise variance. Then, we extend these mechanisms to multidimensional data that can contain both numeric and categorical attributes, where our mechanisms always outperform existing solutions regarding worst-case noise variance. As a case study, we apply our solutions to build an LDP-compliant stochastic gradient descent algorithm (SGD), which powers many important machine learning tasks. Experiments using real datasets confirm the effectiveness of our methods, and their advantages over existing solutions.
引用
收藏
页码:638 / 649
页数:12
相关论文
共 50 条
  • [21] Mobile Data Collection and Analysis with Local Differential Privacy
    Li, Ninghui
    Ye, Qingqing
    2019 20TH INTERNATIONAL CONFERENCE ON MOBILE DATA MANAGEMENT (MDM 2019), 2019, : 4 - 7
  • [22] LoPub: High-Dimensional Crowdsourced Data Publication With Local Differential Privacy
    Ren, Xuebin
    Yu, Chia-Mu
    Yu, Weiren
    Yang, Shusen
    Yang, Xinyu
    McCann, Julie A.
    Yu, Philip S.
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2018, 13 (09) : 2151 - 2166
  • [23] Analyzing Preference Data With Local Privacy: Optimal Utility and Enhanced Robustness
    Wang, Shaowei
    Luo, Xuandi
    Qian, Yuqiu
    Du, Jiachun
    Lin, Wenqing
    Yang, Wei
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (08) : 7753 - 7767
  • [24] Privacy-preserving mechanism for mixed data clustering with local differential privacy
    Yuan, Liujie
    Zhang, Shaobo
    Zhu, Gengming
    Alinani, Karim
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2023, 35 (19)
  • [25] Local differential privacy for data security in key value pair data
    Vijayachandran, Vipin
    Suchithra, R.
    JOURNAL OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING, 2024, 24 (03) : 1955 - 1970
  • [26] Collection scheme of location data based on local differential privacy
    Gao Z.
    Cui X.
    Du B.
    Zhou S.
    Yuan C.
    Li A.
    Qinghua Daxue Xuebao/Journal of Tsinghua University, 2019, 59 (01): : 23 - 27
  • [27] Building Quadtrees for Spatial Data Under Local Differential Privacy
    Alptekin, Ece
    Gursoy, M. Emre
    DATA AND APPLICATIONS SECURITY AND PRIVACY XXXVII, DBSEC 2023, 2023, 13942 : 22 - 39
  • [28] Application of Local Differential Privacy to Collection of Indoor Positioning Data
    Kim, Jong Wook
    Kim, Dae-Ho
    Jang, Beakcheol
    IEEE ACCESS, 2018, 6 : 4276 - 4286
  • [29] HRR: a data cleaning approach preserving local differential privacy
    Han, Qilong
    Chen, Qianqian
    Zhang, Liguo
    Zhang, Kejia
    INTERNATIONAL JOURNAL OF DISTRIBUTED SENSOR NETWORKS, 2018, 14 (12)
  • [30] Privacy Protection Method for K-modes Clustering Data with Local Differential Privacy
    Zhang S.-B.
    Yuan L.-J.
    Mao X.-J.
    Zhu G.-M.
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2022, 50 (09): : 2181 - 2188