GPU IMPLEMENTATION OF SPATIAL PREPROCESSING FOR SPECTRAL UNMIXING OF HYPERSPECTRAL DATA

被引:0
|
作者
Delgado, Jaime [1 ]
Martin, Gabriel [2 ]
Plaza, Javier [1 ]
Ignacio Jimenez, Luis [1 ]
Plaza, Antonio [1 ]
机构
[1] Univ Extremadura, Hyperspectral Comp Lab, Caceres, Spain
[2] Inst Telecomunicacoes, P-1049001 Lisbon, Portugal
来源
2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS) | 2015年
关键词
Hyperspectral imaging; Spectral unmixing; Spatial preprocessing; GPU; EXTRACTION;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The integration of spatial information into spectral unmixing process has attracted much attention in recent years. Several approaches have been developed to incorporate spatial considerations into the endmember extraction/estimation procedure. Spatial preprocessing algorithms are one of the most commonly adopted techniques to guide endmember identification algorithms in terms of the spatial characteristics of the hyperspectral data. Particularly, spatial preprocessing algorithm (SPP) consists on a preprocessing technique that can be used prior to most of existing spectral-based endmember extraction process, thus promoting the selection of endmembers from the most spatially homogeneous regions of the data set. This paper presents a parallel implementation of SPP algorithm which is tested over two different graphic processing units (GPUs) architectures: NVidiaTMGeForce GTX 580 and NVidiaTMGeForce GTX 870M. Experimental validation using a hyperspectral data set collected by AVIRIS sensor shows that it is possible to achieve real-time performance.
引用
收藏
页码:5043 / 5046
页数:4
相关论文
共 50 条
  • [31] Nonlinear Spectral Unmixing of Hyperspectral Images Using Gaussian Processes
    Altmann, Yoann
    Dobigeon, Nicolas
    McLaughlin, Steve
    Tourneret, Jean-Yves
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2013, 61 (10) : 2442 - 2453
  • [32] A Multiobjective Method Leveraging Spatial-Spectral Relationship for Hyperspectral Unmixing
    Liu, Erfeng
    Wu, Zikai
    Zhang, Hongjuan
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [33] Spectral-Spatial Weighted Sparse Regression for Hyperspectral Image Unmixing
    Zhang, Shaoquan
    Li, Jun
    Li, Heng-Chao
    Deng, Chengzhi
    Plaza, Antonio
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (06): : 3265 - 3276
  • [34] Dual Branch Autoencoder Network for Spectral-Spatial Hyperspectral Unmixing
    Hua, Ziqiang
    Li, Xiaorun
    Feng, Yueming
    Zhao, Liaoying
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [35] FUSION OF HYPERSPECTRAL AND PANCHROMATIC DATA BY SPECTRAL UNMIXING IN THE REFLECTIVE DOMAIN
    Constans Y.
    Fabre S.
    Brunet H.
    Seymour M.
    Crombez V.
    Chanussot J.
    Briottet X.
    Deville Y.
    Revue Francaise de Photogrammetrie et de Teledetection, 2022, 224 (01): : 59 - 74
  • [36] Spectral-Spatial Hyperspectral Unmixing Using Nonnegative Matrix Factorization
    Zhang, Shaoquan
    Zhang, Guorong
    Li, Fan
    Deng, Chengzhi
    Wang, Shengqian
    Plaza, Antonio
    Li, Jun
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [37] Spatial-Spectral Nonlinear Hyperspectral Unmixing Under Complex Noise
    Li, Chang
    Li, Jing
    Sui, Chenhong
    Song, Rencheng
    Chen, Xun
    IEEE SENSORS JOURNAL, 2022, 22 (05) : 4338 - 4346
  • [38] SPECTRAL PARTITIONING AND FUSION TECHNIQUES FOR HYPERSPECTRAL DATA CLASSIFICATION AND UNMIXING
    Ammanouil, Rita
    Abou Melhem, Jean
    Farah, Joumana
    Honeine, Paul
    2014 6TH INTERNATIONAL SYMPOSIUM ON COMMUNICATIONS, CONTROL AND SIGNAL PROCESSING (ISCCSP), 2014, : 550 - 553
  • [39] A Comparative Analysis of GPU Implementations of Spectral Unmixing Algorithms
    Sanchez, Sergio
    Plaza, Antonio
    HIGH-PERFORMANCE COMPUTING IN REMOTE SENSING, 2011, 8183
  • [40] Hyperspectral Unmixing With Spectral Variability Using Adaptive Bundles and Double Sparsity
    Uezato, Tatsumi
    Fauvel, Mathieu
    Dobigeon, Nicolas
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (06): : 3980 - 3992