On the classes of higher-order Jensen-convex functions and Wright-convex functions, II

被引:5
|
作者
Mrowiec, Jacek [1 ]
Rajba, Teresa [1 ]
Wasowicz, Szymon [1 ]
机构
[1] Univ Bielsko Biala, Dept Math, Willowa 2, PL-48309 Bielsko Biala, Poland
关键词
Higher-order; (Wright; Jensen)-convexity; Higher-order strong (Wright; Difference operator; Hamel basis;
D O I
10.1016/j.jmaa.2017.01.083
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Recently Nikodem, Rajba and W4sowicz compared the classes of n-Wright-convex functions and n-Jensen-convex functions by showing that the first one is a proper subclass of the latter one, whenever n is an odd natural number. Till now the case of even n was an open problem. In this paper the complete solution is given: it is shown that the inclusion is proper for any natural n. The classes of strongly n-Wright-convex and strongly n-Jensen-convex functions are also compared (with the same assertion). (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:1144 / 1147
页数:4
相关论文
共 50 条
  • [1] On the classes of higher-order Jensen-convex functions and Wright-convex functions
    Nikodem, Kazimierz
    Rajba, Teresa
    Wasowicz, Szymon
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 396 (01) : 261 - 269
  • [2] Decomposition of higher-order Wright-convex functions
    Maksa, Gyula
    Pales, Zsolt
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 359 (02) : 439 - 443
  • [3] CHARACTERIZATIONS AND DECOMPOSITION OF STRONGLY WRIGHT-CONVEX FUNCTIONS OF HIGHER ORDER
    Gilanyi, Attila
    Merentes, Nelson
    Nikodem, Kazimierz
    Pales, Zsolt
    OPUSCULA MATHEMATICA, 2015, 35 (01) : 37 - 46
  • [4] Approximately Jensen-convex functions
    Nagy, Noemi
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2016, 89 (1-2): : 89 - 96
  • [5] On the stability of Wright-convex functions
    J. Mrowiec
    aequationes mathematicae, 2003, 65 (1) : 158 - 164
  • [6] Remarks on Wright-convex functions
    Olbrys, Andrzej
    AEQUATIONES MATHEMATICAE, 2023, 97 (5-6) : 891 - 897
  • [7] Remarks on Wright-convex functions
    Andrzej Olbryś
    Aequationes mathematicae, 2023, 97 : 1157 - 1171
  • [8] Decomposition of Higher-Order Wright Convex Functions Revisited
    Pales, Zsolt
    Shihab, Mahmood Kamil
    RESULTS IN MATHEMATICS, 2022, 77 (02)
  • [9] Decomposition of Higher-Order Wright Convex Functions Revisited
    Zsolt Páles
    Mahmood Kamil Shihab
    Results in Mathematics, 2022, 77
  • [10] Remarks on strongly Wright-convex functions
    Merentes, Nelson
    Nikodem, Kazimierz
    Rivas, Sergio
    ANNALES POLONICI MATHEMATICI, 2011, 102 (03) : 271 - 278