In vitro genome editing activity of Cas9 in somatic cells after random and transposonbased genomic Cas9 integration

被引:1
|
作者
Soellner, Jenny-Helena [1 ]
Sake, Hendrik Johannes [1 ]
Frenzel, Antje [1 ]
Lechler, Rita [1 ]
Herrmann, Doris [1 ]
Fuchs, Walter [2 ]
Petersen, Bjoern [1 ]
机构
[1] Friedrich Loeffler Inst, Inst Farm Anim Genet, Neustadt, Lower Saxony, Germany
[2] Friedrich Loeffler Inst, Inst Mol Virol & Cell Biol, Greifswald, Mecklenburg Wes, Germany
来源
PLOS ONE | 2022年 / 17卷 / 12期
关键词
GENETICALLY-MODIFIED PIGS; GENE; CRISPR/CAS9; MODEL; EFFICIENCY; LIVESTOCK; CANCER; MICE;
D O I
10.1371/journal.pone.0279123
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Due to its close resemblance, the domesticated pig has proven to be a diverse animal model for biomedical research and genome editing tools have contributed to developing porcine models for several human diseases. By employing the CRISPR-Cas9 system, porcine embryos or somatic cells can be genetically modified to generate the desired genotype. However, somatic cell nuclear transfer (SCNT) of modified somatic cells and embryo manipulation are challenging, especially if the desired genotype is detrimental to the embryo. Direct in vivo edits may facilitate the production of genetically engineered pigs by integrating Cas9 into the porcine genome. Cas9 expressing cells were generated by either random integration or transposon-based integration of Cas9 and used as donor cells in SCNT. In total, 15 animals were generated that carried a transposon-based Cas9 integration and two pigs a randomly integrated Cas9. Cas9 expression was confirmed in muscle, tonsil, spleen, kidney, lymph nodes, oral mucosa, and liver in two boars. Overall, Cas9 expression was higher for transposon-based integration, except in tonsils and liver. To verify Cas9 activity, fibroblasts were subjected to in vitro genome editing. Isolated fibroblasts were transfected with guide RNAs (gRNA) targeting different genes (GGTA1, B4GALNT2, B2M) relevant to xenotransplantation. Next generation sequencing revealed that the editing efficiencies varied (2- 60%) between the different target genes. These results show that the integrated Cas9 remained functional, and that Cas9 expressing pigs may be used to induce desired genomic modifications to model human diseases or further evaluate in vivo gene therapy approaches.
引用
收藏
页数:16
相关论文
共 50 条
  • [11] A CRISPR/Cas9 toolkit for multiplex genome editing in plants
    Xing, Hui-Li
    Dong, Li
    Wang, Zhi-Ping
    Zhang, Hai-Yan
    Han, Chun-Yan
    Liu, Bing
    Wang, Xue-Chen
    Chen, Qi-Jun
    BMC PLANT BIOLOGY, 2014, 14
  • [12] CRSIPR/Cas9: Magic scissors for genome editing
    Wang, Ming
    CHINESE SCIENCE BULLETIN-CHINESE, 2020, 65 (36): : 4168 - 4170
  • [13] Modulating CRISPR/Cas9 genome-editing activity by small molecules
    Chen, Siwei
    Chen, Deng
    Liu, Bin
    Haisma, Hidde J.
    DRUG DISCOVERY TODAY, 2022, 27 (04) : 951 - 966
  • [14] Inducible Genome Editing with Conditional CRISPR/Cas9 Mice
    Katigbak, Alexandra
    Robert, Francis
    Paquet, Marilene
    Pelletier, Jerry
    G3-GENES GENOMES GENETICS, 2018, 8 (05): : 1627 - 1635
  • [15] Comparison of Various Nuclear Localization Signal-Fused Cas9 Proteins and Cas9 mRNA for Genome Editing in Zebrafish
    Hu, Peinan
    Zhao, Xueying
    Zhang, Qinghua
    Li, Weiming
    Zu, Yao
    G3-GENES GENOMES GENETICS, 2018, 8 (03): : 823 - 831
  • [16] Efficient Mitochondrial Genome Editing by CRISPR/Cas9
    Jo, Areum
    Ham, Sangwoo
    Lee, Gum Hwa
    Lee, Yun-Il
    Kim, SangSeong
    Lee, Yun-Song
    Shin, Joo-Ho
    Lee, Yunjong
    BIOMED RESEARCH INTERNATIONAL, 2015, 2015
  • [17] CRISPR/Cas9 genome editing pipeline for mice and rats
    Saunders, Thomas
    Filipiak, Wanda
    Gavrilina, Galina
    LaForest, Anna
    Ziebell, Corey
    Zeidler, Michael
    Hughes, Elizabeth
    TRANSGENIC RESEARCH, 2016, 25 (02) : 260 - 261
  • [18] CRISPR/Cas9: A powerful tool for crop genome editing
    Song, Gaoyuan
    Jia, Meiling
    Chen, Kai
    Kong, Xingchen
    Khattak, Bushra
    Xie, Chuanxiao
    Li, Aili
    Mao, Long
    CROP JOURNAL, 2016, 4 (02): : 75 - 82
  • [19] Genome Editing in Cotton with the CRISPR/Cas9 System
    Gao, Wei
    Long, Lu
    Tian, Xinquan
    Xu, Fuchun
    Liu, Ji
    Singh, Prashant K.
    Botella, Jose R.
    Song, Chunpeng
    FRONTIERS IN PLANT SCIENCE, 2017, 8
  • [20] CRISPR/Cas9 and other techniques for genome editing
    Hartung, Frank
    Schiemann, Jochen
    Sprink, Thorben
    ZWEITES SYMPOSIUM ZIERPFLANZENZUCHTUNG, 2017, 2017, 457 : 36 - 39