Exponential domination in function spaces

被引:2
作者
Tkachuk, Vladimir V. [1 ,2 ]
机构
[1] Univ Autonoma Metropolitana, Dept Matemat, Av San Rafael Atlixco 186, Mexico City 09340, DF, Mexico
[2] Auburn Univ, Dept Math & Stat, 221 Parker Hall, Auburn, AL 36849 USA
来源
COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE | 2020年 / 61卷 / 03期
关键词
exponential kappa-domination; exponential kappa-cofinality; kappa-stable space; i-weight; function space; duality; kappa(+)-small diagonal;
D O I
10.14712/1213-7243.2020.032
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a Tychonoff space X and an infinite cardinal kappa, we prove that exponential kappa-domination in X is equivalent to exponential kappa-cofinality of C-p(X). On the other hand, exponential kappa-cofinality of X is equivalent to exponential kappa-domination in C-p(X). We show that every exponentially kappa-cofinal space X has a kappa(+)-small diagonal; besides, if X is kappa-stable, then nw(X) <= kappa. In particular, any compact exponentially kappa-cofinal space has weight not exceeding kappa. We also establish that any exponentially kappa-cofinal space X with l(X) <= kappa and t(X) <= kappa has i-weight not exceeding kappa while for any cardinal kappa, there exists an exponentially omega-cofinal space X such that l(X) >= kappa.
引用
收藏
页码:397 / 408
页数:12
相关论文
共 50 条
[31]   Function spaces not containing ℓ1 [J].
S. A. Argyros ;
A. Manoussakis ;
M. Petrakis .
Israel Journal of Mathematics, 2003, 135 :29-81
[32]   Embeddings and frames of function spaces [J].
Tkachuk, Vladimir V. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 357 (01) :237-243
[33]   Function spaces and local properties [J].
Feng, Ziqin ;
Gartside, Paul .
FUNDAMENTA MATHEMATICAE, 2013, 223 (03) :207-223
[34]   CHAINS OF FUNCTION SPACES OVER EUCLIDIAN SPACES AND LOCAL FIELDS [J].
Zhaoxi Wang Jiangsu Mathematical Society No Hankou Road Nanjing Nanjing P R China .
AnalysisinTheoryandApplications, 2009, 25 (01) :92-100
[35]   Function spaces and one point extensions for the construct of metered spaces [J].
Colebunders, E. ;
Gerlo, A. ;
Sonck, G. .
TOPOLOGY AND ITS APPLICATIONS, 2006, 153 (16) :3129-3139
[36]   Maximal classes of topological spaces and domains determined by function spaces [J].
Lawson, JD ;
Xu, LS .
APPLIED CATEGORICAL STRUCTURES, 2003, 11 (04) :391-402
[37]   On function spaces related to some kinds of weakly sober spaces [J].
Zhang, Xiaoyuan ;
Bao, Meng ;
Xu, Xiaoquan .
AIMS MATHEMATICS, 2022, 7 (05) :9311-9324
[38]   Maximal Classes of Topological Spaces and Domains Determined by Function Spaces [J].
Jimmie D. Lawson ;
Luoshan Xu .
Applied Categorical Structures, 2003, 11 :391-402
[39]   A NOTE ON CONDENSATIONS OF FUNCTION SPACES ONTO σ-COMPACT AND ANALYTIC SPACES [J].
Krupski, Mikolaj .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 143 (05) :2263-2268
[40]   MATRIX OPERATORS ON FUNCTION-VALUED FUNCTION SPACES [J].
Ong, Sing-Cheong ;
Rakbud, Jitti ;
Wootijirattikal, Titarii .
KOREAN JOURNAL OF MATHEMATICS, 2019, 27 (02) :375-415