Exponential domination in function spaces

被引:2
作者
Tkachuk, Vladimir V. [1 ,2 ]
机构
[1] Univ Autonoma Metropolitana, Dept Matemat, Av San Rafael Atlixco 186, Mexico City 09340, DF, Mexico
[2] Auburn Univ, Dept Math & Stat, 221 Parker Hall, Auburn, AL 36849 USA
来源
COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE | 2020年 / 61卷 / 03期
关键词
exponential kappa-domination; exponential kappa-cofinality; kappa-stable space; i-weight; function space; duality; kappa(+)-small diagonal;
D O I
10.14712/1213-7243.2020.032
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a Tychonoff space X and an infinite cardinal kappa, we prove that exponential kappa-domination in X is equivalent to exponential kappa-cofinality of C-p(X). On the other hand, exponential kappa-cofinality of X is equivalent to exponential kappa-domination in C-p(X). We show that every exponentially kappa-cofinal space X has a kappa(+)-small diagonal; besides, if X is kappa-stable, then nw(X) <= kappa. In particular, any compact exponentially kappa-cofinal space has weight not exceeding kappa. We also establish that any exponentially kappa-cofinal space X with l(X) <= kappa and t(X) <= kappa has i-weight not exceeding kappa while for any cardinal kappa, there exists an exponentially omega-cofinal space X such that l(X) >= kappa.
引用
收藏
页码:397 / 408
页数:12
相关论文
共 50 条
[21]   Function spaces of smoothness zero [J].
Besov, O. V. .
DOKLADY MATHEMATICS, 2012, 86 (01) :447-449
[22]   ON FUNCTION SPACES. II [J].
Ershov, Yu L. ;
Schwidefsky, M., V .
SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2022, 19 (02) :815-834
[23]   On Function Spaces. III [J].
Ershov, Yu. L. ;
Schwidefsky, M. V. .
LOBACHEVSKII JOURNAL OF MATHEMATICS, 2024, 45 (04) :1819-1824
[24]   TRUNCATED SMOOTH FUNCTION SPACES [J].
Dominguez, Oscar ;
Tikhonov, Sergey .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2024, 377 (12) :8877-8934
[25]   Building Blocks in Function Spaces [J].
H. Triebel .
Analysis Mathematica, 2023, 49 :1107-1136
[26]   Embedding theorems for function spaces [J].
Al'perin, Mikhail ;
Nokhrin, Sergei ;
Osipov, Alexander V. .
TOPOLOGY AND ITS APPLICATIONS, 2023, 332
[27]   LOCAL NETWORKS FOR FUNCTION SPACES [J].
Gartside, Paul ;
Morgan, Jeremiah .
HOUSTON JOURNAL OF MATHEMATICS, 2019, 45 (03) :893-923
[28]   Building Blocks in Function Spaces [J].
Triebel, H. .
ANALYSIS MATHEMATICA, 2023, 49 (04) :1107-1136
[29]   Function Spaces for Liquid Crystals [J].
Stephen Bedford .
Archive for Rational Mechanics and Analysis, 2016, 219 :937-984
[30]   Topologies on function spaces and hyperspaces [J].
Georgiou, D. N. .
APPLIED GENERAL TOPOLOGY, 2009, 10 (01) :159-171