Exponential domination in function spaces

被引:2
作者
Tkachuk, Vladimir V. [1 ,2 ]
机构
[1] Univ Autonoma Metropolitana, Dept Matemat, Av San Rafael Atlixco 186, Mexico City 09340, DF, Mexico
[2] Auburn Univ, Dept Math & Stat, 221 Parker Hall, Auburn, AL 36849 USA
来源
COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE | 2020年 / 61卷 / 03期
关键词
exponential kappa-domination; exponential kappa-cofinality; kappa-stable space; i-weight; function space; duality; kappa(+)-small diagonal;
D O I
10.14712/1213-7243.2020.032
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a Tychonoff space X and an infinite cardinal kappa, we prove that exponential kappa-domination in X is equivalent to exponential kappa-cofinality of C-p(X). On the other hand, exponential kappa-cofinality of X is equivalent to exponential kappa-domination in C-p(X). We show that every exponentially kappa-cofinal space X has a kappa(+)-small diagonal; besides, if X is kappa-stable, then nw(X) <= kappa. In particular, any compact exponentially kappa-cofinal space has weight not exceeding kappa. We also establish that any exponentially kappa-cofinal space X with l(X) <= kappa and t(X) <= kappa has i-weight not exceeding kappa while for any cardinal kappa, there exists an exponentially omega-cofinal space X such that l(X) >= kappa.
引用
收藏
页码:397 / 408
页数:12
相关论文
共 50 条
  • [1] Exponential density has a bidual in function spaces
    Tkachuk, Vladimir V.
    EUROPEAN JOURNAL OF MATHEMATICS, 2021, 7 (03) : 1280 - 1290
  • [2] Exponential density has a bidual in function spaces
    Vladimir V. Tkachuk
    European Journal of Mathematics, 2021, 7 : 1280 - 1290
  • [3] EXPONENTIAL DENSITY VS EXPONENTIAL DOMINATION
    Bella, A.
    Tkachuk, V. V.
    ACTA MATHEMATICA HUNGARICA, 2021, 164 (01) : 232 - 242
  • [4] Star countable spaces and ω-domination of discrete subspaces
    Alas, Ofelia T.
    Junqueira, Lucia R.
    Tkachuk, Vladimir V.
    Wilson, Richard G.
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 113 (02) : 807 - 818
  • [5] Strong domination by countable and second countable spaces
    Tkachuk, V. V.
    TOPOLOGY AND ITS APPLICATIONS, 2017, 228 : 318 - 326
  • [6] On the Generalized Favard-Kantorovich and Favard-Durrmeyer Operators in Exponential Function Spaces
    Grzegorz Nowak
    Aneta Sikorska-Nowak
    Journal of Inequalities and Applications, 2007
  • [7] ON FUNCTION SPACES
    Ershov, Yu L.
    Schwidefsky, M., V
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2020, 17 : 999 - 1008
  • [8] A model for function spaces
    Gatsinzi, J. -B.
    TOPOLOGY AND ITS APPLICATIONS, 2014, 168 : 153 - 158
  • [9] λ-Topologies on function spaces
    Velichko N.V.
    Journal of Mathematical Sciences, 2005, 131 (4) : 5701 - 5737
  • [10] Duality in function spaces
    Di Maio G.
    Meccariello E.
    Naimpally S.A.
    Mediterranean Journal of Mathematics, 2006, 3 (2) : 189 - 204