Advances in engineering CRISPR-Cas9 as a molecular Swiss Army knife

被引:11
|
作者
Meaker, Grace A. [1 ,2 ]
Hair, Emma J. [1 ]
Gorochowski, Thomas E. [1 ,3 ]
机构
[1] Univ Bristol, Sch Biol Sci, Bristol BS8 1TQ, Avon, England
[2] Cardiff Univ, Sch Biosci, Cardiff CF10 3AT, Wales
[3] Univ Bristol, BrisSynBio, Bristol BS8 1TQ, Avon, England
基金
英国生物技术与生命科学研究理事会;
关键词
synthetic biology; CRISPR; genome editing; ethics; Cas9; SEQUENCE-SPECIFIC CONTROL; RNA-GUIDED ENDONUCLEASE; TARGET DNA; CRYSTAL-STRUCTURE; HUMAN-CELLS; HOMOLOGOUS RECOMBINATION; CRISPR/CAS SYSTEM; ESCHERICHIA-COLI; STRUCTURAL BASIS; CAS9; VARIANTS;
D O I
10.1093/synbio/ysaa021
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The RNA-guided endonuclease system CRISPR-Cas9 has been extensively modified since its discovery, allowing its capabilities to extend far beyond double-stranded cleavage to high fidelity insertions, deletions and single base edits. Such innovations have been possible due to the modular architecture of CRISPR-Cas9 and the robustness of its component parts to modifications and the fusion of new functional elements. Here, we review the broad toolkit of CRISPR-Cas9-based systems now available for diverse genome-editing tasks. We provide an overview of their core molecular structure and mechanism and distil the design principles used to engineer their diverse functionalities. We end by looking beyond the biochemistry and toward the societal and ethical challenges that these CRISPR-Cas9 systems face if their transformative capabilities are to be deployed in a safe and acceptable manner.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] A Simplified Method for CRISPR-Cas9 Engineering of Bacillus subtilis
    Sachla, Ankita J.
    Alfonso, Alexander J.
    Helmann, John D.
    MICROBIOLOGY SPECTRUM, 2021, 9 (02):
  • [32] Protein Engineering Strategies to Expand CRISPR-Cas9 Applications
    Ribeiro, Lucas F.
    Ribeiro, Liliane F. C.
    Barreto, Matheus Q.
    Ward, Richard J.
    INTERNATIONAL JOURNAL OF GENOMICS, 2018, 2018
  • [33] CRISPR-Cas9 Genome Engineering: Trends in Medicine and Health
    Zaib, Sumera
    Saleem, Mushtaq A.
    Khan, Imtiaz
    MINI-REVIEWS IN MEDICINAL CHEMISTRY, 2022, 22 (03) : 410 - 421
  • [34] Highly parallel genome variant engineering with CRISPR-Cas9
    Sadhu, Meru J.
    Bloom, Joshua S.
    Day, Laura
    Siegel, Jake J.
    Kosuri, Sriram
    Kruglyak, Leonid
    NATURE GENETICS, 2018, 50 (04) : 510 - +
  • [35] CRISPR-Cas9 System for Genome Engineering of Photosynthetic Microalgae
    Patel, Vikas Kumar
    Soni, Niraja
    Prasad, Venkatesh
    Sapre, Ajit
    Dasgupta, Santanu
    Bhadra, Bhaskar
    MOLECULAR BIOTECHNOLOGY, 2019, 61 (08) : 541 - 561
  • [36] Optimization of genome editing through CRISPR-Cas9 engineering
    Zhang, Jian-Hua
    Adikaram, Poorni
    Pandey, Mritunjay
    Genis, Allison
    Simonds, William F.
    BIOENGINEERED, 2016, 7 (03) : 166 - 174
  • [37] CRISPR-Cas9: How bacteria revolutionize genome engineering
    Charpentier, E.
    EUROPEAN JOURNAL OF HUMAN GENETICS, 2019, 27 : 754 - 754
  • [38] Zebrafish Genome Engineering Using the CRISPR-Cas9 System
    Li, Mingyu
    Zhao, Liyuan
    Page-McCaw, Patrick S.
    Chen, Wenbiao
    TRENDS IN GENETICS, 2016, 32 (12) : 815 - 827
  • [39] A CRISPR-Cas9 System for Genetic Engineering of Filamentous Fungi
    Nodvig, Christina S.
    Nielsen, Jakob B.
    Kogle, Martin E.
    Mortensen, Uffe H.
    PLOS ONE, 2015, 10 (07):
  • [40] CRISPR-Cas9 for the genome engineering of cyanobacteria and succinate production
    Li, Hung
    Shen, Claire R.
    Huang, Chun-Hung
    Sung, Li-Yu
    Wu, Meng-Ying
    Hu, Yu-Chen
    METABOLIC ENGINEERING, 2016, 38 : 293 - 302