What Cure Models Can Teach us About Genome-Wide Survival Analysis

被引:7
|
作者
Stringer, Sven [1 ]
Denys, Damiaan [2 ]
Kahn, Rene S. [3 ]
Derks, Eske M. [2 ]
机构
[1] Vrije Univ Amsterdam, CNCR, Dept Complex Trait Genet, Neurosci Campus Amsterdam, Amsterdam, Netherlands
[2] Univ Amsterdam, Acad Med Ctr, Dept Psychiat, Meibergdreef 9, NL-1105 AZ Amsterdam, Netherlands
[3] Univ Med Ctr, Rudolf Magnus Inst Neurosci, Dept Psychiat, Utrecht, Netherlands
关键词
Proportional hazards model; Logistic regression; Cox regression; Accelerated failure time model; Simulation study; ASSOCIATION; FAMILY;
D O I
10.1007/s10519-015-9764-0
中图分类号
B84 [心理学]; C [社会科学总论]; Q98 [人类学];
学科分类号
03 ; 0303 ; 030303 ; 04 ; 0402 ;
摘要
The aim of logistic regression is to estimate genetic effects on disease risk, while survival analysis aims to determine effects on age of onset. In practice, genetic variants may affect both types of outcomes. A cure survival model analyzes logistic and survival effects simultaneously. The aim of this simulation study is to assess the performance of logistic regression and traditional survival analysis under a cure model and to investigate the benefits of cure survival analysis. We simulated data under a cure model and varied the percentage of subjects at risk for disease (cure fraction), the logistic and survival effect sizes, and the contribution of genetic background risk factors. We then computed the error rates and estimation bias of logistic, Cox proportional hazards (PH), and cure PH analysis, respectively. The power of logistic and Cox PH analysis is sensitive to the cure fraction and background heritability. Our results show that traditional Cox PH analysis may erroneously detect age of onset effects if no such effects are present in the data. In the presence of genetic background risk even the cure model results in biased estimates of both the odds ratio and the hazard ratio. Cure survival analysis takes cure fractions into account and can be used to simultaneously estimate the effect of genetic variants on disease risk and age of onset. Since genome-wide cure survival analysis is not computationally feasible, we recommend this analysis for genetic variants that are significant in a traditional survival analysis.
引用
收藏
页码:269 / 280
页数:12
相关论文
共 50 条
  • [41] Genome-wide analysis of Ollier disease: Is it all in the genes?
    Pansuriya, Twinkal C.
    Oosting, Jan
    Krenacs, Tibor
    Taminiau, Antonie H. M.
    Verdegaal, Suzan H. M.
    Sangiorgi, Luca
    Sciot, Raf
    Hogendoorn, Pancras C. W.
    Szuhai, Karoly
    Bovee, Judith V. M. G.
    ORPHANET JOURNAL OF RARE DISEASES, 2011, 6
  • [42] Genome-wide DNA methylation analysis in alcohol dependence
    Zhang, Ruiling
    Miao, Qin
    Wang, Chuansheng
    Zhao, Rongrong
    Li, Wenqiang
    Haile, Colin N.
    Hao, Wei
    Zhang, Xiang Yang
    ADDICTION BIOLOGY, 2013, 18 (02) : 392 - 403
  • [43] Analysis of genome-wide DNA methylation patterns in obesity
    Wang, Chunhu
    Wang, Meng
    Ma, Jiguang
    ENDOCRINE JOURNAL, 2021, 68 (12) : 1439 - 1453
  • [44] Creative Activities in Music - A Genome-Wide Linkage Analysis
    Oikkonen, Jaana
    Kuusi, Tuire
    Peltonen, Petri
    Raijas, Pirre
    Ukkola-Vuoti, Liisa
    Karma, Kai
    Onkamo, Paivi
    Jarvela, Irma
    PLOS ONE, 2016, 11 (02):
  • [45] Genome-Wide Analysis of Structural Variants in Parkinson Disease
    Billingsley, Kimberley J.
    Ding, Jinhui
    Jerez, Pilar Alvarez
    Illarionova, Anastasia
    Levine, Kristin
    Grenn, Francis P.
    Makarious, Mary B.
    Moore, Anni
    Vitale, Daniel
    Reed, Xylena
    Hernandez, Dena
    Torkamani, Ali
    Ryten, Mina
    Hardy, John
    Chia, Ruth W.
    Scholz, Sonja J.
    Traynor, Bryan L.
    Dalgard, Clifton J.
    Ehrlich, Debra
    Tanaka, Toshiko
    Ferrucci, Luigi G.
    Beach, Thomas E.
    Serrano, Geidy P.
    Quinn, John J.
    Bubb, Vivien
    Collins, Ryan L.
    Zhao, Xuefang
    Walker, Mark
    Pierce-Hoffman, Emma
    Brand, Harrison E.
    Talkowski, Michael
    Casey, Bradford
    Cookson, Mark R.
    Markham, Androo A.
    Nalls, Mike
    Mahmoud, Medhat
    Sedlazeck, Fritz J.
    Blauwendraat, Cornelis
    Gibbs, J. Raphael B.
    Singleton, Andrew
    ANNALS OF NEUROLOGY, 2023, 93 (05) : 1012 - 1022
  • [46] Genome-wide pharmacogenomic analysis of response to treatment with antipsychotics
    McClay, J. L.
    Adkins, D. E.
    Aberg, K.
    Stroup, S.
    Perkins, D. O.
    Vladimirov, V. I.
    Lieberman, J. A.
    Sullivan, P. F.
    van den Oord, E. J. C. G.
    MOLECULAR PSYCHIATRY, 2011, 16 (01) : 76 - 85
  • [47] Genome-wide analysis of cyclins in maize (Zea mays)
    Hu, X.
    Cheng, X.
    Jiang, H.
    Zhu, S.
    Cheng, B.
    Xiang, Y.
    GENETICS AND MOLECULAR RESEARCH, 2010, 9 (03) : 1490 - 1503
  • [48] Genome-Wide Analysis of Lipoxygenase (LOX) Genes in Angiosperms
    Camargo, Paula Oliveira
    Calzado, Natalia Fermino
    Budzinski, Ilara Gabriela Frasson
    Domingues, Douglas Silva
    PLANTS-BASEL, 2023, 12 (02):
  • [49] Genome-wide meta-analysis identifies new susceptibility loci for migraine
    Anttila, Verneri
    Winsvold, Bendik S.
    Gormley, Padhraig
    Kurth, Tobias
    Bettella, Francesco
    McMahon, George
    Kallela, Mikko
    Malik, Rainer
    de Vries, Boukje
    Terwindt, Gisela
    Medland, Sarah E.
    Todt, Unda
    McArdle, Wendy L.
    Quaye, Lydia
    Koiranen, Markku
    Ikram, M. Arfan
    Lehtimaki, Terho
    Stam, Anine H.
    Ligthart, Lannie
    Wedenoja, Juho
    Dunham, Ian
    Neale, Benjamin M.
    Palta, Priit
    Hamalainen, Eija
    Schuerks, Markus
    Rose, Lynda M.
    Buring, Julie E.
    Ridker, Paul M.
    Steinberg, Stacy
    Stefansson, Hreinn
    Jakobsson, Finnbogi
    Lawlor, Debbie A.
    Evans, David M.
    Ring, Susan M.
    Farkkila, Markus
    Artto, Ville
    Kaunisto, Mari A.
    Freilinger, Tobias
    Schoenen, Jean
    Frants, Rune R.
    Pelzer, Nadine
    Weller, Claudia M.
    Zielman, Ronald
    Heath, Andrew C.
    Madden, Pamela A. F.
    Montgomery, Grant W.
    Martin, Nicholas G.
    Borck, Guntram
    Goebel, Hartmut
    Heinze, Axel
    NATURE GENETICS, 2013, 45 (08) : 912 - U255
  • [50] Significance Levels in Genome-Wide Interaction Analysis (GWIA)
    Becker, Tim
    Herold, Christine
    Meesters, Christian
    Mattheisen, Manuel
    Baur, Max P.
    ANNALS OF HUMAN GENETICS, 2011, 75 : 29 - 35