What Cure Models Can Teach us About Genome-Wide Survival Analysis

被引:7
|
作者
Stringer, Sven [1 ]
Denys, Damiaan [2 ]
Kahn, Rene S. [3 ]
Derks, Eske M. [2 ]
机构
[1] Vrije Univ Amsterdam, CNCR, Dept Complex Trait Genet, Neurosci Campus Amsterdam, Amsterdam, Netherlands
[2] Univ Amsterdam, Acad Med Ctr, Dept Psychiat, Meibergdreef 9, NL-1105 AZ Amsterdam, Netherlands
[3] Univ Med Ctr, Rudolf Magnus Inst Neurosci, Dept Psychiat, Utrecht, Netherlands
关键词
Proportional hazards model; Logistic regression; Cox regression; Accelerated failure time model; Simulation study; ASSOCIATION; FAMILY;
D O I
10.1007/s10519-015-9764-0
中图分类号
B84 [心理学]; C [社会科学总论]; Q98 [人类学];
学科分类号
03 ; 0303 ; 030303 ; 04 ; 0402 ;
摘要
The aim of logistic regression is to estimate genetic effects on disease risk, while survival analysis aims to determine effects on age of onset. In practice, genetic variants may affect both types of outcomes. A cure survival model analyzes logistic and survival effects simultaneously. The aim of this simulation study is to assess the performance of logistic regression and traditional survival analysis under a cure model and to investigate the benefits of cure survival analysis. We simulated data under a cure model and varied the percentage of subjects at risk for disease (cure fraction), the logistic and survival effect sizes, and the contribution of genetic background risk factors. We then computed the error rates and estimation bias of logistic, Cox proportional hazards (PH), and cure PH analysis, respectively. The power of logistic and Cox PH analysis is sensitive to the cure fraction and background heritability. Our results show that traditional Cox PH analysis may erroneously detect age of onset effects if no such effects are present in the data. In the presence of genetic background risk even the cure model results in biased estimates of both the odds ratio and the hazard ratio. Cure survival analysis takes cure fractions into account and can be used to simultaneously estimate the effect of genetic variants on disease risk and age of onset. Since genome-wide cure survival analysis is not computationally feasible, we recommend this analysis for genetic variants that are significant in a traditional survival analysis.
引用
收藏
页码:269 / 280
页数:12
相关论文
共 50 条
  • [21] Cardiovascular regulation and cardiovascular diseases: what can sleep teach us?
    Castiglioni, Paolo
    Lombardi, Carolina
    JOURNAL OF HYPERTENSION, 2009, 27 (08) : 1533 - 1535
  • [22] What ultrastable globular proteins teach us about protein stabilization
    Jaenicke, R
    BIOCHEMISTRY-MOSCOW, 1998, 63 (03) : 312 - 321
  • [23] Genome-wide pathway analysis of breast cancer
    Lee, Young Ho
    Kim, Jae-Hoon
    Song, Gwan Gyu
    TUMOR BIOLOGY, 2014, 35 (08) : 7699 - 7705
  • [24] Susceptibility to Childhood Pneumonia: A Genome-Wide Analysis
    Hayden, Lystra P.
    Cho, Michael H.
    McDonald, Merry-Lynn N.
    Crapo, James D.
    Beaty, Terri H.
    Silverman, Edwin K.
    Hersh, Craig P.
    AMERICAN JOURNAL OF RESPIRATORY CELL AND MOLECULAR BIOLOGY, 2017, 56 (01) : 20 - 28
  • [25] Genome-wide analysis of complex traits in cattle
    Pausch, H.
    Fries, R.
    ZUCHTUNGSKUNDE, 2014, 86 (01): : 47 - 57
  • [26] A Novel Statistic for Genome-Wide Interaction Analysis
    Wu, Xuesen
    Dong, Hua
    Luo, Li
    Zhu, Yun
    Peng, Gang
    Reveille, John D.
    Xiong, Momiao
    PLOS GENETICS, 2010, 6 (09):
  • [27] Improved Statistics for Genome-Wide Interaction Analysis
    Ueki, Masao
    Cordell, Heather J.
    PLOS GENETICS, 2012, 8 (04): : 141 - 159
  • [28] Genome-wide pathway analysis in pancreatic cancer
    Lee, Young Ho
    Song, Gwan Gyu
    JOURNAL OF BUON, 2015, 20 (06): : 1565 - 1575
  • [29] A GENERAL APPROACH FOR CURE MODELS IN SURVIVAL ANALYSIS
    Patilea, Valentin
    Van Keilegom, Ingrid
    ANNALS OF STATISTICS, 2020, 48 (04) : 2323 - 2346
  • [30] Genome-wide analysis identifies novel susceptibility loci for myocardial infarction
    Hartiala, Jaana A.
    Han, Yi
    Jia, Qiong
    Hilser, James R.
    Huang, Pin
    Gukasyan, Janet
    Schwartzman, William S.
    Cai, Zhiheng
    Biswas, Subarna
    Tregouet, David-Alexandre
    Smith, Nicholas L.
    Seldin, Marcus
    Pan, Calvin
    Mehrabian, Margarete
    Lusis, Aldons J.
    Bazeley, Peter
    Sun, Yan, V
    Liu, Chang
    Quyyumi, Arshed A.
    Scholz, Markus
    Thiery, Joachim
    Delgado, Graciela E.
    Kleber, Marcus E.
    Maerz, Winfried
    Howe, Laurence J.
    Asselbergs, Folkert W.
    van Vugt, Marion
    Vlachojannis, Georgios J.
    Patel, Riyaz S.
    Lyytikainen, Leo-Pekka
    Kahonen, Mika
    Lehtimaki, Terho
    Nieminen, Tuomo V. M.
    Kuukasjarvi, Pekka
    Laurikka, Jari O.
    Chang, Xuling
    Heng, Chew-Kiat
    Jiang, Rong
    Kraus, William E.
    Hauser, Elizabeth R.
    Ferguson, Jane F.
    Reilly, Muredach P.
    Ito, Kaoru
    Koyama, Satoshi
    Kamatani, Yoichiro
    Komuro, Issei
    Japan, Biobank
    Stolze, Lindsey K.
    Romanoski, Casey E.
    Khan, Mohammad Daud
    EUROPEAN HEART JOURNAL, 2021, 42 (09) : 919 - 933