Empirical Bayes posterior concentration in sparse high-dimensional linear models

被引:68
|
作者
Martin, Ryan [1 ]
Mess, Raymond [1 ]
Walker, Stephen G. [2 ]
机构
[1] Univ Illinois, Dept Math Stat & Comp Sci, 851 S Morgan St, Chicago, IL 60607 USA
[2] Univ Texas Austin, Dept Math, 2525 Speedway Stop C1200, Austin, TX 78712 USA
基金
美国国家科学基金会;
关键词
data-dependent prior; fractional likelihood; minimax; regression; variable selection; VARIABLE SELECTION; DANTZIG SELECTOR; CONVERGENCE-RATES; REGRESSION; SHRINKAGE; LASSO; SPIKE;
D O I
10.3150/15-BEJ797
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose a new empirical Bayes approach for inference in the p >> n normal linear model. The novelty is the use of data in the prior in two ways, for centering and regularization. Under suitable sparsity assumptions, we establish a variety of concentration rate results for the empirical Bayes posterior distribution, relevant for both estimation and model selection. Computation is straightforward and fast, and simulation results demonstrate the strong finite-sample performance of the empirical Bayes model selection procedure.
引用
收藏
页码:1822 / 1847
页数:26
相关论文
共 50 条
  • [41] Variable selection in high-dimensional sparse multiresponse linear regression models
    Shan Luo
    Statistical Papers, 2020, 61 : 1245 - 1267
  • [42] Robust and sparse learning of varying coefficient models with high-dimensional features
    Xiong, Wei
    Tian, Maozai
    Tang, Manlai
    Pan, Han
    JOURNAL OF APPLIED STATISTICS, 2023, 50 (16) : 3312 - 3336
  • [43] L0-regularized high-dimensional sparse multiplicative models
    Ming, Hao
    Yang, Hu
    Xia, Xiaochao
    STATISTICAL THEORY AND RELATED FIELDS, 2025, 9 (01) : 59 - 83
  • [44] L0-regularized high-dimensional sparse multiplicative models
    Ming, Hao
    Yang, Hu
    Xia, Xiaochao
    STATISTICAL THEORY AND RELATED FIELDS, 2025,
  • [45] Robust inference for high-dimensional single index models
    Han, Dongxiao
    Han, Miao
    Huang, Jian
    Lin, Yuanyuan
    SCANDINAVIAN JOURNAL OF STATISTICS, 2023, 50 (04) : 1590 - 1615
  • [46] Balanced estimation for high-dimensional measurement error models
    Zheng, Zemin
    Li, Yang
    Yu, Chongxiu
    Li, Gaorong
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2018, 126 : 78 - 91
  • [47] A Selective Review of Group Selection in High-Dimensional Models
    Huang, Jian
    Breheny, Patrick
    Ma, Shuangge
    STATISTICAL SCIENCE, 2012, 27 (04) : 481 - 499
  • [48] Efficient test-based variable selection for high-dimensional linear models
    Gong, Siliang
    Zhang, Kai
    Liu, Yufeng
    JOURNAL OF MULTIVARIATE ANALYSIS, 2018, 166 : 17 - 31
  • [49] Sparse meta-analysis with high-dimensional data
    He, Qianchuan
    Zhang, Hao Helen
    Avery, Christy L.
    Lin, D. Y.
    BIOSTATISTICS, 2016, 17 (02) : 205 - 220
  • [50] Variable selection in multivariate linear models with high-dimensional covariance matrix estimation
    Perrot-Dockes, Marie
    Levy-Leduc, Celine
    Sansonnet, Laure
    Chiquet, Julien
    JOURNAL OF MULTIVARIATE ANALYSIS, 2018, 166 : 78 - 97