Empirical Bayes posterior concentration in sparse high-dimensional linear models

被引:68
|
作者
Martin, Ryan [1 ]
Mess, Raymond [1 ]
Walker, Stephen G. [2 ]
机构
[1] Univ Illinois, Dept Math Stat & Comp Sci, 851 S Morgan St, Chicago, IL 60607 USA
[2] Univ Texas Austin, Dept Math, 2525 Speedway Stop C1200, Austin, TX 78712 USA
基金
美国国家科学基金会;
关键词
data-dependent prior; fractional likelihood; minimax; regression; variable selection; VARIABLE SELECTION; DANTZIG SELECTOR; CONVERGENCE-RATES; REGRESSION; SHRINKAGE; LASSO; SPIKE;
D O I
10.3150/15-BEJ797
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose a new empirical Bayes approach for inference in the p >> n normal linear model. The novelty is the use of data in the prior in two ways, for centering and regularization. Under suitable sparsity assumptions, we establish a variety of concentration rate results for the empirical Bayes posterior distribution, relevant for both estimation and model selection. Computation is straightforward and fast, and simulation results demonstrate the strong finite-sample performance of the empirical Bayes model selection procedure.
引用
收藏
页码:1822 / 1847
页数:26
相关论文
共 50 条
  • [31] Cluster feature selection in high-dimensional linear models
    Lin, Bingqing
    Pang, Zhen
    Wang, Qihua
    RANDOM MATRICES-THEORY AND APPLICATIONS, 2018, 7 (01)
  • [32] Shrinkage and Sparse Estimation for High-Dimensional Linear Models
    Asl, M. Noori
    Bevrani, H.
    Belaghi, R. Arabi
    Ahmed, Syed Ejaz
    PROCEEDINGS OF THE THIRTEENTH INTERNATIONAL CONFERENCE ON MANAGEMENT SCIENCE AND ENGINEERING MANAGEMENT, VOL 1, 2020, 1001 : 147 - 156
  • [33] High-dimensional robust inference for censored linear models
    Huang, Jiayu
    Wu, Yuanshan
    SCIENCE CHINA-MATHEMATICS, 2024, 67 (04) : 891 - 918
  • [34] Calibrated Equilibrium Estimation and Double Selection for High-dimensional Partially Linear Measurement Error Models
    Luo, Jingxuan
    Li, Gaorong
    Peng, Heng
    Yue, Lili
    JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2024,
  • [35] NEARLY OPTIMAL MINIMAX ESTIMATOR FOR HIGH-DIMENSIONAL SPARSE LINEAR REGRESSION
    Zhang, Li
    ANNALS OF STATISTICS, 2013, 41 (04) : 2149 - 2175
  • [36] Homogeneity detection for the high-dimensional generalized linear model
    Jeon, Jong-June
    Kwon, Sunghoon
    Choi, Hosik
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2017, 114 : 61 - 74
  • [37] Sparse Estimation Strategies in Linear Mixed Effect Models for High-Dimensional Data Application
    Opoku, Eugene A.
    Ahmed, Syed Ejaz
    Nathoo, Farouk S.
    ENTROPY, 2021, 23 (10)
  • [38] Fixed-Size Confidence Regions in High-Dimensional Sparse Linear Regression Models
    Ing, Ching-Kang
    Lai, Tze Leung
    SEQUENTIAL ANALYSIS-DESIGN METHODS AND APPLICATIONS, 2015, 34 (03): : 324 - 335
  • [39] High-dimensional posterior consistency of the Bayesian lasso
    Dasgupta, Shibasish
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2016, 45 (22) : 6700 - 6708
  • [40] Variable selection in high-dimensional sparse multiresponse linear regression models
    Luo, Shan
    STATISTICAL PAPERS, 2020, 61 (03) : 1245 - 1267