Empirical Bayes posterior concentration in sparse high-dimensional linear models

被引:69
|
作者
Martin, Ryan [1 ]
Mess, Raymond [1 ]
Walker, Stephen G. [2 ]
机构
[1] Univ Illinois, Dept Math Stat & Comp Sci, 851 S Morgan St, Chicago, IL 60607 USA
[2] Univ Texas Austin, Dept Math, 2525 Speedway Stop C1200, Austin, TX 78712 USA
基金
美国国家科学基金会;
关键词
data-dependent prior; fractional likelihood; minimax; regression; variable selection; VARIABLE SELECTION; DANTZIG SELECTOR; CONVERGENCE-RATES; REGRESSION; SHRINKAGE; LASSO; SPIKE;
D O I
10.3150/15-BEJ797
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose a new empirical Bayes approach for inference in the p >> n normal linear model. The novelty is the use of data in the prior in two ways, for centering and regularization. Under suitable sparsity assumptions, we establish a variety of concentration rate results for the empirical Bayes posterior distribution, relevant for both estimation and model selection. Computation is straightforward and fast, and simulation results demonstrate the strong finite-sample performance of the empirical Bayes model selection procedure.
引用
收藏
页码:1822 / 1847
页数:26
相关论文
共 50 条
  • [31] Robust Testing in High-Dimensional Sparse Models
    George, Anand Jerry
    Canonne, Clement L.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35, NEURIPS 2022, 2022,
  • [32] Boosting for high-dimensional linear models
    Buhlmann, Peter
    ANNALS OF STATISTICS, 2006, 34 (02): : 559 - 583
  • [33] EMPIRICAL LIKELIHOOD RATIO TESTS FOR COEFFICIENTS IN HIGH-DIMENSIONAL HETEROSCEDASTIC LINEAR MODELS
    Wang, Honglang
    Zhong, Ping-Shou
    Cui, Yuehua
    STATISTICA SINICA, 2018, 28 (04) : 2409 - 2433
  • [34] Decorrelated empirical likelihood for generalized linear models with high-dimensional longitudinal data
    Geng, Shuli
    Zhang, Lixin
    STATISTICS & PROBABILITY LETTERS, 2024, 211
  • [35] Prediction intervals, factor analysis models, and high-dimensional empirical linear prediction
    Ding, AA
    Hwang, JTG
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1999, 94 (446) : 446 - 455
  • [36] Penalized empirical likelihood for high-dimensional generalized linear models with longitudinal data
    Chen, Xia
    Tan, Xiaoyan
    Yan, Li
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2023, 93 (10) : 1515 - 1531
  • [37] Finite sample posterior concentration in high-dimensional regression
    Strawn, Nate
    Armagan, Artin
    Saab, Rayan
    Carin, Lawrence
    Dunson, David
    INFORMATION AND INFERENCE-A JOURNAL OF THE IMA, 2014, 3 (02) : 103 - 133
  • [38] A STEPWISE REGRESSION METHOD AND CONSISTENT MODEL SELECTION FOR HIGH-DIMENSIONAL SPARSE LINEAR MODELS
    Ing, Ching-Kang
    Lai, Tze Leung
    STATISTICA SINICA, 2011, 21 (04) : 1473 - 1513
  • [39] RELATIVE COST BASED MODEL SELECTION FOR SPARSE HIGH-DIMENSIONAL LINEAR REGRESSION MODELS
    Gohain, Prakash B.
    Jansson, Magnus
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 5515 - 5519
  • [40] Sparse Estimation Strategies in Linear Mixed Effect Models for High-Dimensional Data Application
    Opoku, Eugene A.
    Ahmed, Syed Ejaz
    Nathoo, Farouk S.
    ENTROPY, 2021, 23 (10)