Empirical Bayes posterior concentration in sparse high-dimensional linear models

被引:68
|
作者
Martin, Ryan [1 ]
Mess, Raymond [1 ]
Walker, Stephen G. [2 ]
机构
[1] Univ Illinois, Dept Math Stat & Comp Sci, 851 S Morgan St, Chicago, IL 60607 USA
[2] Univ Texas Austin, Dept Math, 2525 Speedway Stop C1200, Austin, TX 78712 USA
基金
美国国家科学基金会;
关键词
data-dependent prior; fractional likelihood; minimax; regression; variable selection; VARIABLE SELECTION; DANTZIG SELECTOR; CONVERGENCE-RATES; REGRESSION; SHRINKAGE; LASSO; SPIKE;
D O I
10.3150/15-BEJ797
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose a new empirical Bayes approach for inference in the p >> n normal linear model. The novelty is the use of data in the prior in two ways, for centering and regularization. Under suitable sparsity assumptions, we establish a variety of concentration rate results for the empirical Bayes posterior distribution, relevant for both estimation and model selection. Computation is straightforward and fast, and simulation results demonstrate the strong finite-sample performance of the empirical Bayes model selection procedure.
引用
收藏
页码:1822 / 1847
页数:26
相关论文
共 50 条
  • [21] Group selection in high-dimensional partially linear additive models
    Wei, Fengrong
    BRAZILIAN JOURNAL OF PROBABILITY AND STATISTICS, 2012, 26 (03) : 219 - 243
  • [22] Variational Bayes for high-dimensional proportional hazards models with applications within gene expression
    Komodromos, Michael
    Aboagye, Eric O.
    Evangelou, Marina
    Filippi, Sarah
    Ray, Kolyan
    BIOINFORMATICS, 2022, 38 (16) : 3918 - 3926
  • [23] Introduction to variational Bayes for high-dimensional linear and logistic regression models
    Jang, Insong
    Lee, Kyoungjae
    KOREAN JOURNAL OF APPLIED STATISTICS, 2022, 35 (03) : 445 - 455
  • [24] Penalised robust estimators for sparse and high-dimensional linear models
    Umberto Amato
    Anestis Antoniadis
    Italia De Feis
    Irene Gijbels
    Statistical Methods & Applications, 2021, 30 : 1 - 48
  • [25] Penalised robust estimators for sparse and high-dimensional linear models
    Amato, Umberto
    Antoniadis, Anestis'
    De Feis, Italia
    Gijbels, Irene
    STATISTICAL METHODS AND APPLICATIONS, 2021, 30 (01) : 1 - 48
  • [26] Posterior Consistency of Factor Dimensionality in High-Dimensional Sparse Factor Models
    Ohn, Ilsang
    Kim, Yongdai
    BAYESIAN ANALYSIS, 2022, 17 (02): : 491 - 514
  • [27] An iterative matrix uncertainty selector for high-dimensional generalized linear models with measurement errors
    Fesuh Nono, Betrand
    Nguefack-Tsague, Georges
    Kegnenlezom, Martin
    Nguema, Eugene-Patrice N.
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2025,
  • [28] Inference for High-Dimensional Sparse Econometric Models
    Belloni, Alexandre
    Chernozhukov, Victor
    Hansen, Christian B.
    ADVANCES IN ECONOMICS AND ECONOMETRICS, VOL III: ECONOMETRICS, 2013, (51): : 245 - 295
  • [29] A sparse additive model for high-dimensional interactions with an exposure variable
    Bhatnagar, Sahir R.
    Lu, Tianyuan
    Lovato, Amanda
    Olds, David L.
    Kobor, Michael S.
    Meaney, Michael J.
    O'Donnell, Kieran
    Yang, Archer Y.
    Greenwood, Celia M. T.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2023, 179
  • [30] Boosting for high-dimensional linear models
    Buhlmann, Peter
    ANNALS OF STATISTICS, 2006, 34 (02) : 559 - 583