Empirical Bayes posterior concentration in sparse high-dimensional linear models

被引:69
|
作者
Martin, Ryan [1 ]
Mess, Raymond [1 ]
Walker, Stephen G. [2 ]
机构
[1] Univ Illinois, Dept Math Stat & Comp Sci, 851 S Morgan St, Chicago, IL 60607 USA
[2] Univ Texas Austin, Dept Math, 2525 Speedway Stop C1200, Austin, TX 78712 USA
基金
美国国家科学基金会;
关键词
data-dependent prior; fractional likelihood; minimax; regression; variable selection; VARIABLE SELECTION; DANTZIG SELECTOR; CONVERGENCE-RATES; REGRESSION; SHRINKAGE; LASSO; SPIKE;
D O I
10.3150/15-BEJ797
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose a new empirical Bayes approach for inference in the p >> n normal linear model. The novelty is the use of data in the prior in two ways, for centering and regularization. Under suitable sparsity assumptions, we establish a variety of concentration rate results for the empirical Bayes posterior distribution, relevant for both estimation and model selection. Computation is straightforward and fast, and simulation results demonstrate the strong finite-sample performance of the empirical Bayes model selection procedure.
引用
收藏
页码:1822 / 1847
页数:26
相关论文
共 50 条
  • [21] Permutation testing in high-dimensional linear models: an empirical investigation
    Hemerik, Jesse
    Thoresen, Magne
    Finos, Livio
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2021, 91 (05) : 897 - 914
  • [22] Significance testing in non-sparse high-dimensional linear models
    Zhu, Yinchu
    Bradic, Jelena
    ELECTRONIC JOURNAL OF STATISTICS, 2018, 12 (02): : 3312 - 3364
  • [23] Variable selection in high-dimensional sparse multiresponse linear regression models
    Luo, Shan
    STATISTICAL PAPERS, 2020, 61 (03) : 1245 - 1267
  • [24] Sparse High-Dimensional Models in Economics
    Fan, Jianqing
    Lv, Jinchi
    Qi, Lei
    ANNUAL REVIEW OF ECONOMICS, VOL 3, 2011, 3 : 291 - 317
  • [25] Variable selection in high-dimensional sparse multiresponse linear regression models
    Shan Luo
    Statistical Papers, 2020, 61 : 1245 - 1267
  • [26] Variational Bayes for high-dimensional linear regression with sparse priors (Jan, 10.1080/01621459.2020.1847121, 2021)
    Ray, Kolyan
    Szabo, Botond
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2021, 116 (535) : 1560 - 1560
  • [27] Asymptotics for empirical eigenvalue processes in high-dimensional linear factor models
    Horvath, Lajos
    Rice, Gregory
    JOURNAL OF MULTIVARIATE ANALYSIS, 2019, 169 : 138 - 165
  • [28] High-dimensional test for alpha in linear factor pricing models with sparse alternatives?
    Feng, Long
    Lan, Wei
    Liu, Binghui
    Ma, Yanyuan
    JOURNAL OF ECONOMETRICS, 2022, 229 (01) : 152 - 175
  • [29] Sparse Markov Models for High-dimensional Inference
    Ost, Guilherme
    Takahashi, Daniel Y.
    JOURNAL OF MACHINE LEARNING RESEARCH, 2023, 24
  • [30] Inference for High-Dimensional Sparse Econometric Models
    Belloni, Alexandre
    Chernozhukov, Victor
    Hansen, Christian B.
    ADVANCES IN ECONOMICS AND ECONOMETRICS, VOL III: ECONOMETRICS, 2013, (51): : 245 - 295