Empirical Bayes posterior concentration in sparse high-dimensional linear models

被引:68
|
作者
Martin, Ryan [1 ]
Mess, Raymond [1 ]
Walker, Stephen G. [2 ]
机构
[1] Univ Illinois, Dept Math Stat & Comp Sci, 851 S Morgan St, Chicago, IL 60607 USA
[2] Univ Texas Austin, Dept Math, 2525 Speedway Stop C1200, Austin, TX 78712 USA
基金
美国国家科学基金会;
关键词
data-dependent prior; fractional likelihood; minimax; regression; variable selection; VARIABLE SELECTION; DANTZIG SELECTOR; CONVERGENCE-RATES; REGRESSION; SHRINKAGE; LASSO; SPIKE;
D O I
10.3150/15-BEJ797
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose a new empirical Bayes approach for inference in the p >> n normal linear model. The novelty is the use of data in the prior in two ways, for centering and regularization. Under suitable sparsity assumptions, we establish a variety of concentration rate results for the empirical Bayes posterior distribution, relevant for both estimation and model selection. Computation is straightforward and fast, and simulation results demonstrate the strong finite-sample performance of the empirical Bayes model selection procedure.
引用
收藏
页码:1822 / 1847
页数:26
相关论文
共 50 条