Empirical Bayes posterior concentration in sparse high-dimensional linear models

被引:69
|
作者
Martin, Ryan [1 ]
Mess, Raymond [1 ]
Walker, Stephen G. [2 ]
机构
[1] Univ Illinois, Dept Math Stat & Comp Sci, 851 S Morgan St, Chicago, IL 60607 USA
[2] Univ Texas Austin, Dept Math, 2525 Speedway Stop C1200, Austin, TX 78712 USA
基金
美国国家科学基金会;
关键词
data-dependent prior; fractional likelihood; minimax; regression; variable selection; VARIABLE SELECTION; DANTZIG SELECTOR; CONVERGENCE-RATES; REGRESSION; SHRINKAGE; LASSO; SPIKE;
D O I
10.3150/15-BEJ797
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose a new empirical Bayes approach for inference in the p >> n normal linear model. The novelty is the use of data in the prior in two ways, for centering and regularization. Under suitable sparsity assumptions, we establish a variety of concentration rate results for the empirical Bayes posterior distribution, relevant for both estimation and model selection. Computation is straightforward and fast, and simulation results demonstrate the strong finite-sample performance of the empirical Bayes model selection procedure.
引用
收藏
页码:1822 / 1847
页数:26
相关论文
共 50 条
  • [1] Empirical Bayes inference in sparse high-dimensional generalized linear models
    Tang, Yiqi
    Martin, Ryan
    ELECTRONIC JOURNAL OF STATISTICS, 2024, 18 (02): : 3212 - 3246
  • [2] Empirical Bayes estimators for high-dimensional sparse vectors
    Srinath, K. Pavan
    Venkataramanan, Ramji
    INFORMATION AND INFERENCE-A JOURNAL OF THE IMA, 2020, 9 (01) : 195 - 234
  • [3] Efficient sparse high-dimensional linear regression with a partitioned empirical Bayes ECM algorithm
    Mclain, Alexander C.
    Zgodic, Anja
    Bondell, Howard
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2025, 207
  • [4] Variational Bayes for High-Dimensional Linear Regression With Sparse Priors
    Ray, Kolyan
    Szabo, Botond
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2022, 117 (539) : 1270 - 1281
  • [5] Empirical Bayes predictive densities for high-dimensional normal models
    Xu, Xinyi
    Zhou, Dunke
    JOURNAL OF MULTIVARIATE ANALYSIS, 2011, 102 (10) : 1417 - 1428
  • [6] A sparse empirical Bayes approach to high-dimensional Gaussian process-based varying coefficient models
    Kim, Myungjin
    Goh, Gyuhyeong
    STAT, 2024, 13 (02):
  • [7] Shrinkage and Sparse Estimation for High-Dimensional Linear Models
    Asl, M. Noori
    Bevrani, H.
    Belaghi, R. Arabi
    Ahmed, Syed Ejaz
    PROCEEDINGS OF THE THIRTEENTH INTERNATIONAL CONFERENCE ON MANAGEMENT SCIENCE AND ENGINEERING MANAGEMENT, VOL 1, 2020, 1001 : 147 - 156
  • [8] Empirical Priors for Prediction in Sparse High-dimensional Linear Regression
    Martin, Ryan
    Tang, Yiqi
    JOURNAL OF MACHINE LEARNING RESEARCH, 2020, 21
  • [9] Empirical priors for prediction in sparse high-dimensional linear regression
    Martin, Ryan
    Tang, Yiqi
    Journal of Machine Learning Research, 2020, 21
  • [10] Empirical process of residuals for high-dimensional linear models
    Mammen, E
    ANNALS OF STATISTICS, 1996, 24 (01): : 307 - 335