Hyperspectral and Multispectral Image Fusion via Graph Laplacian-Guided Coupled Tensor Decomposition

被引:72
作者
Bu, Yuanyang [1 ]
Zhao, Yongqiang [1 ]
Xue, Jize [1 ]
Chan, Jonathan Cheung-Wai [2 ]
Kong, Seong G. [3 ]
Yi, Chen [4 ]
Wen, Jinhuan [5 ]
Wang, Binglu [4 ]
机构
[1] Northwestern Polytech Univ, Res & Dev Inst, Shenzhen 518057, Peoples R China
[2] Vrije Univ Brussel, Dept Elect & Informat, B-1050 Brussels, Belgium
[3] Sejong Univ, Dept Comp Engn, Seoul 05006, South Korea
[4] Northwestern Polytech Univ, Dept Automat, Xian 710129, Peoples R China
[5] Northwestern Polytech Univ, Dept Nat & Appl Sci, Xian 710129, Peoples R China
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2021年 / 59卷 / 01期
基金
中国国家自然科学基金;
关键词
Tensile stress; Matrix decomposition; Sparse matrices; Laplace equations; Manifolds; Hyperspectral imaging; Spatial resolution; Coupled tensor decomposition; graph Laplacian; hyperspectral imaging; image fusion; manifold structure; SUPERRESOLUTION; REGULARIZATION;
D O I
10.1109/TGRS.2020.2992788
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
We propose a novel graph Laplacian-guided coupled tensor decomposition (gLGCTD) model for fusion of hyperspectral image (HSI) and multispectral image (MSI) for spatial and spectral resolution enhancements. The coupled Tucker decomposition is employed to capture the global interdependencies across the different modes to fully exploit the intrinsic global spatial spectral information. To preserve local characteristics, the complementary submanifold structures embedded in high-resolution (HR)-HSI are encoded by the graph Laplacian regularizations. The global spatial spectral information captured by the coupled Tucker decomposition and the local submanifold structures are incorporated into a unified framework. The gLGCTD fusion framework is solved by a hybrid framework between the proximal alternating optimization (PAO) and the alternating direction method of multipliers (ADMM). Experimental results on both synthetic and real data sets demonstrate that the gLGCTD fusion method is superior to state-of-the-art fusion methods with a more accurate reconstruction of the HR-HSI.
引用
收藏
页码:648 / 662
页数:15
相关论文
共 47 条
[1]  
Akhtar N, 2015, PROC CVPR IEEE, P3631, DOI 10.1109/CVPR.2015.7298986
[2]   Sparse Spatio-spectral Representation for Hyperspectral Image Super-resolution [J].
Akhtar, Naveed ;
Shafait, Faisal ;
Mian, Ajmal .
COMPUTER VISION - ECCV 2014, PT VII, 2014, 8695 :63-78
[3]  
[Anonymous], 2012, MATRIX COMPUTATIONS
[4]   Proximal Alternating Minimization and Projection Methods for Nonconvex Problems: An Approach Based on the Kurdyka-Lojasiewicz Inequality [J].
Attouch, Hedy ;
Bolte, Jerome ;
Redont, Patrick ;
Soubeyran, Antoine .
MATHEMATICS OF OPERATIONS RESEARCH, 2010, 35 (02) :438-457
[5]  
Belkin M, 2002, ADV NEUR IN, V14, P585
[6]   Distributed optimization and statistical learning via the alternating direction method of multipliers [J].
Boyd S. ;
Parikh N. ;
Chu E. ;
Peleato B. ;
Eckstein J. .
Foundations and Trends in Machine Learning, 2010, 3 (01) :1-122
[7]   Multilinear Graph Embedding: Representation and Regularization for Images [J].
Chen, Yi-Lei ;
Hsu, Chiou-Ting .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2014, 23 (02) :741-754
[8]   Tensor Decompositions for Signal Processing Applications [J].
Cichocki, Andrzej ;
Mandic, Danilo P. ;
Anh Huy Phan ;
Caiafa, Cesar F. ;
Zhou, Guoxu ;
Zhao, Qibin ;
De Lathauwer, Lieven .
IEEE SIGNAL PROCESSING MAGAZINE, 2015, 32 (02) :145-163
[9]   On the best rank-1 and rank-(R1,R2,...,RN) approximation of higher-order tensors [J].
De Lathauwer, L ;
De Moor, B ;
Vandewalle, J .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2000, 21 (04) :1324-1342
[10]   Exploiting Spectral and Spatial Information in Hyperspectral Urban Data With High Resolution [J].
Dell'Acqua, F. ;
Gamba, P. ;
Ferrari, A. ;
Palmason, J. A. ;
Benediktsson, J. A. ;
Arnason, K. .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2004, 1 (04) :322-326