Hyperspectral and Multispectral Image Fusion via Graph Laplacian-Guided Coupled Tensor Decomposition

被引:67
|
作者
Bu, Yuanyang [1 ]
Zhao, Yongqiang [1 ]
Xue, Jize [1 ]
Chan, Jonathan Cheung-Wai [2 ]
Kong, Seong G. [3 ]
Yi, Chen [4 ]
Wen, Jinhuan [5 ]
Wang, Binglu [4 ]
机构
[1] Northwestern Polytech Univ, Res & Dev Inst, Shenzhen 518057, Peoples R China
[2] Vrije Univ Brussel, Dept Elect & Informat, B-1050 Brussels, Belgium
[3] Sejong Univ, Dept Comp Engn, Seoul 05006, South Korea
[4] Northwestern Polytech Univ, Dept Automat, Xian 710129, Peoples R China
[5] Northwestern Polytech Univ, Dept Nat & Appl Sci, Xian 710129, Peoples R China
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2021年 / 59卷 / 01期
基金
中国国家自然科学基金;
关键词
Tensile stress; Matrix decomposition; Sparse matrices; Laplace equations; Manifolds; Hyperspectral imaging; Spatial resolution; Coupled tensor decomposition; graph Laplacian; hyperspectral imaging; image fusion; manifold structure; SUPERRESOLUTION; REGULARIZATION;
D O I
10.1109/TGRS.2020.2992788
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
We propose a novel graph Laplacian-guided coupled tensor decomposition (gLGCTD) model for fusion of hyperspectral image (HSI) and multispectral image (MSI) for spatial and spectral resolution enhancements. The coupled Tucker decomposition is employed to capture the global interdependencies across the different modes to fully exploit the intrinsic global spatial spectral information. To preserve local characteristics, the complementary submanifold structures embedded in high-resolution (HR)-HSI are encoded by the graph Laplacian regularizations. The global spatial spectral information captured by the coupled Tucker decomposition and the local submanifold structures are incorporated into a unified framework. The gLGCTD fusion framework is solved by a hybrid framework between the proximal alternating optimization (PAO) and the alternating direction method of multipliers (ADMM). Experimental results on both synthetic and real data sets demonstrate that the gLGCTD fusion method is superior to state-of-the-art fusion methods with a more accurate reconstruction of the HR-HSI.
引用
收藏
页码:648 / 662
页数:15
相关论文
共 50 条
  • [1] Nonlocal Coupled Tensor CP Decomposition for Hyperspectral and Multispectral Image Fusion
    Xu, Yang
    Wu, Zebin
    Chanussot, Jocelyn
    Comon, Pierre
    Wei, Zhihui
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (01): : 348 - 362
  • [2] Coupled Tensor Decomposition for Hyperspectral and Multispectral Image Fusion With Inter-Image Variability
    Borsoi, Ricardo A.
    Prevost, Clemence
    Usevich, Konstantin
    Brie, David
    Bermudez, Jose C. M.
    Richard, Cedric
    IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2021, 15 (03) : 702 - 717
  • [3] Hyperspectral and Multispectral Image Fusion via Variational Tensor Subspace Decomposition
    Xing, Yinghui
    Zhang, Yan
    Yang, Shuyuan
    Zhang, Yanning
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [4] Hyperspectral-Multispectral Image Fusion via Tensor Ring and Subspace Decompositions
    Xu, Honghui
    Qin, Mengjie
    Chen, Sheng Yong
    Zheng, Yuhui
    Zheng, Jian Wei
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 (14) : 8823 - 8837
  • [5] Hyperspectral and Multispectral Image Fusion Using Factor Smoothed Tensor Ring Decomposition
    Chen, Yong
    Zeng, Jinshan
    He, Wei
    Zhao, Xi-Le
    Huang, Ting-Zhu
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [6] A Coupled Tensor Double-Factor Method for Hyperspectral and Multispectral Image Fusion
    Xu, Ting
    Huang, Ting-Zhu
    Deng, Liang-Jian
    Xiao, Jin-Liang
    Broni-Bediako, Clifford
    Xia, Junshi
    Yokoya, Naoto
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 17
  • [7] Low-Rank Tensor Decomposition With Smooth and Sparse Regularization for Hyperspectral and Multispectral Data Fusion
    Ma, Fei
    Yang, Feixia
    Wang, Yanwei
    IEEE ACCESS, 2020, 8 : 129842 - 129856
  • [8] Nonlocal Sparse Tensor Factorization for Semiblind Hyperspectral and Multispectral Image Fusion
    Dian, Renwei
    Li, Shutao
    Fang, Leyuan
    Lu, Ting
    Bioucas-Dias, Jose M.
    IEEE TRANSACTIONS ON CYBERNETICS, 2020, 50 (10) : 4469 - 4480
  • [9] Hyperspectral and Multispectral Image Fusion Using Coupled Non-Negative Tucker Tensor Decomposition
    Zare, Marzieh
    Helfroush, Mohammad Sadegh
    Kazemi, Kamran
    Scheunders, Paul
    REMOTE SENSING, 2021, 13 (15)
  • [10] Hyperspectral and Multispectral Image Fusion via Nonlocal Low-Rank Tensor Approximation and Sparse Representation
    Li, Xuelong
    Yuan, Yue
    Wang, Qi
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (01): : 550 - 562