Lie algebras admitting a unique quadratic structure

被引:18
作者
Bajo, I [1 ]
Benayadi, S [1 ]
机构
[1] UNIV METZ,URA CNRS 399,DEPT MATH,F-57045 METZ,FRANCE
关键词
D O I
10.1080/00927879708826023
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that any Lie algebra g over a field K of characteristic zero admitting a unique up to a constant quadratic structure is necessarily a simple Lie algebra. If the field K is algebraically closed, such condition is also sufficient. Further, a real Lie algebra g admits a unique quadratic structure if and only if its complexification g(C) is a simple Lie algebra over C.
引用
收藏
页码:2795 / 2805
页数:11
相关论文
共 7 条
  • [1] BENOIST Y, 1988, CR ACAD SCI I-MATH, V307, P901
  • [2] BORDEMANN M, 1992, NONDEGENERATE INVARI
  • [3] Goto M., 1978, SEMISIMPLE LIE ALGEB
  • [4] ORTHOGONAL LIE-ALGEBRAS - ORTHOGONAL MODULES
    MEDINA, A
    REVOY, P
    [J]. COMMUNICATIONS IN ALGEBRA, 1993, 21 (07) : 2295 - 2315
  • [5] MEDINA A, 1985, ANN SCI ECOLE NORM S, V18, P553
  • [6] MEDINA A, 1984, GEOMETRIC SYMPLECTIQ
  • [7] O'Neill B., 1983, SEMIRIEMANNIAN GEOME