Temperature Control of Mussel-Inspired Chemistry toward Hierarchical Superhydrophobic Surfaces for Oil/Water Separation

被引:75
|
作者
Wang, Yanbing [1 ]
Shang, Bin [1 ]
Hu, Xiaoxi [2 ]
Peng, Bo [3 ]
Deng, Ziwei [1 ,2 ]
机构
[1] Shaanxi Normal Univ, Sch Mat Sci & Engn, Xian 710062, Peoples R China
[2] Qinzhou Univ, Guangxi Coll & Univ Key Lab Beibu Gulf Oil & Nat, Qinzhou 535000, Peoples R China
[3] Univ Oxford, Dept Chem, Phys & Theoret Chem Lab, South Parks Rd, Oxford OX1 3QZ, England
来源
ADVANCED MATERIALS INTERFACES | 2017年 / 4卷 / 02期
基金
中国国家自然科学基金;
关键词
NANOCOMPOSITE PARTICLES; ANTIBACTERIAL ACTIVITIES; LOTUS-LEAF; OIL-SPILL; POLYDOPAMINE; WETTABILITY; FILM; MONODISPERSE; MULTILAYERS; ABSORPTION;
D O I
10.1002/admi.201600727
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
By adopting polydopamine chemistry, a single-step approach is introduced toward hierarchical surfaces with tunable surface wetting properties via adjusting the reaction temperature. After the hydrophobic surface decoration, the tunable superhydrophobicity of the surfaces is achieved. This tunability has been realized on a series of materials with different surface geometries, including silica nanospheres and microrods, silicon wafer, stainless steel mesh, and melamine-formaldehyde sponge. These superhydrophobic mesh and sponge are ideal candidates for collecting various oils/organic solvents from water, because not only they exhibit high absorption/separation capacity, excellent selectivity, and extraordinary recyclability, but also they are highly chemically resistant, environmentally stable and mechanically durable. This whole procedure is straightforward, cost-effective, green, and materialand surface geometry-independent, more importantly, the obtained surface morphology is tunable, providing more opportunities to cater the demands from fundamental and practical fields.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Mussel-inspired chitosan modified superhydrophilic and underwater superoleophobic cotton fabric for efficient oil/water separation
    Wang, Meng
    Peng, Min
    Zhu, Jiang
    Li, Yi-Dong
    Zeng, Jian-Bing
    CARBOHYDRATE POLYMERS, 2020, 244
  • [32] Mussel-inspired superhydrophobic surfaces with enhanced corrosion resistance and dual-action antibacterial properties
    Qian, Hongchang
    Li, Minglu
    Li, Zhong
    Lou, Yuntian
    Huang, Luyao
    Zhang, Dawei
    Xu, Dake
    Du, Cuiwei
    Lu, Lin
    Gao, Jin
    MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2017, 80 : 566 - 577
  • [33] Mussel-inspired superhydrophilic membrane constructed on a hydrophilic polymer network for highly efficient oil/water separation
    Xu, Zhongzheng
    Li, Lin
    Liu, Jiawei
    Dai, Caili
    Sun, Wen
    Chen, Jia
    Zhu, Zhixuan
    Zhao, Mingwei
    Zeng, Hongbo
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2022, 608 : 702 - 710
  • [34] Mussel-inspired modification of PTFE membranes in a miscible THF-Tris buffer mixture for oil-in-water emulsions separation
    Li, Xipeng
    Shan, Huiting
    Cao, Min
    Li, Baoan
    JOURNAL OF MEMBRANE SCIENCE, 2018, 555 : 237 - 249
  • [35] Mussel-inspired modification of a polymer membrane for ultra-high water permeability and oil-in-water emulsion separation
    Yang, Hao-Cheng
    Liao, Kun-Jian
    Huang, He
    Wu, Qing-Yun
    Wan, Ling-Shu
    Xu, Zhi-Kang
    JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (26) : 10225 - 10230
  • [36] Calcium ions enhanced mussel-inspired underwater superoleophobic coating with superior mechanical stability and hot water repellence for efficient oil/water separation
    Wang, Jintao
    Liu, Shuyu
    Guo, Shengwei
    APPLIED SURFACE SCIENCE, 2020, 503
  • [37] Mussel-Inspired Ag NPs Immobilized on Melamine Sponge for Reduction of 4-Nitrophenol, Antibacterial Applications and Its Superhydrophobic Derivative for Oil-Water Separation
    Chen, Teng
    Liu, Zhiyu
    Zhang, Kai
    Su, Bolin
    Hu, Zhenhua
    Wan, Hongri
    Chen, Yan
    Fu, Xinkai
    Gao, Zhaojian
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (42) : 50539 - 50551
  • [38] Mechanical Stability of Liquid-Infused Surfaces Based on Mussel-Inspired Polydopamine Chemistry
    Chiera, Salvatore
    Ghetina, Melissa
    Zimmermann, Thomas
    Wintzheimer, Susanne
    Stauch, Claudia
    Loebmann, Peer
    Mandel, Karl
    Vogel, Nicolas
    MACROMOLECULAR MATERIALS AND ENGINEERING, 2023, 308 (12)
  • [39] Mussel-inspired superhydrophilic and antibacterial membranes for effective gravity-driven separation of oil-in-water emulsions
    Lin, Yingying
    Yu, Fan
    Yu, Zijian
    Lin, Xiaoyan
    Lin, Fang
    Liu, Riri
    Chen, Qin
    Du, Jiale
    Huang, Xuan
    Gu, Ailiang
    Li, Xuewei
    Arcadio, Sotto
    Fang, Shengqiong
    Ye, Wenyuan
    Lin, Jiuyang
    SEPARATION AND PURIFICATION TECHNOLOGY, 2024, 341
  • [40] Mussel-Inspired Fabrication of PDA@PAN Electrospun Nanofibrous Membrane for Oil-in-Water Emulsion Separation
    Zhao, Haodong
    He, Yali
    Wang, Zhihua
    Zhao, Yanbao
    Sun, Lei
    NANOMATERIALS, 2021, 11 (12)