On (p, q)-analogue of Kantorovich type Bernstein-Stancu-Schurer operators

被引:50
作者
Cai, Qing-Bo [1 ]
Zhou, Guorong [2 ]
机构
[1] Quanzhon Normal Univ, Sch Math & Comp Sci, Quanzhou 362000, Peoples R China
[2] Xiamen Univ Technol, Sch Appl Math, Xiamen 361024, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
(p q)-integers; Bernstein-Stancu-Schurer operators; A-statistical convergence; Rate of convergence; Lipschitz continuous functions;
D O I
10.1016/j.amc.2015.12.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce a new kind of Kantorovich-type Bernstein-Stancu-Schurer operators based on the concept of (p, q)-integers. We investigate statistical approximation properties and establish a local approximation theorem, we also give a convergence theorem for the Lipschitz continuous functions. Finally, we give some graphics and numerical examples to illustrate the convergence properties of operators to some functions. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:12 / 20
页数:9
相关论文
共 13 条
  • [1] DeVore Ronald A., 1993, Constructive Approximation, V303
  • [2] Duman O, 2008, TAIWAN J MATH, V12, P523
  • [3] Hounkonnou M. N., 2013, SUT J. Math., V49, P145, DOI [10.55937/sut/1394548362, DOI 10.55937/SUT/1394548362]
  • [4] Jagannathan R., 2005, P INT C NUMB THEOR M
  • [5] NORMAL ORDERING FOR DEFORMED BOSON OPERATORS AND OPERATOR-VALUED DEFORMED STIRLING NUMBERS
    KATRIEL, J
    KIBLER, M
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (09): : 2683 - 2691
  • [6] On (p, q)-analogue of Bernstein operators
    Mursaleen, M.
    Ansari, Khursheed J.
    Khan, Asif
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2015, 266 : 874 - 882
  • [7] Some approximation results by (p, q)-analogue of Bernstein-Stancu operators
    Mursaleen, M.
    Ansari, Khursheed J.
    Khan, Asif
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2015, 264 : 392 - 402
  • [8] Mursaleen M., 2015, J INEQUAL APPL, V2015, P1
  • [9] Mursaleen M., 2015, ARXIV150405887V2
  • [10] Mursaleen M., 2015, ARXIV150602487V1