Client Selection for Federated Learning With Non-IID Data in Mobile Edge Computing

被引:127
|
作者
Zhang, Wenyu [1 ]
Wang, Xiumin [1 ]
Zhou, Pan [2 ]
Wu, Weiwei [3 ]
Zhang, Xinglin [1 ]
机构
[1] South China Univ Technol, Sch Comp Sci & Engn, Guangzhou 510006, Peoples R China
[2] Huazhong Univ Sci & Technol, Hubei Engn Res Ctr Big Data Secur, Sch Cyber Sci & Engn, Wuhan 430074, Peoples R China
[3] Southeast Univ, Sch Comp Sci & Engn, Nanjing 210096, Peoples R China
基金
中国国家自然科学基金;
关键词
Data models; Training; Servers; Computational modeling; Internet of Things; Distributed databases; Degradation; Federated learning; mobile edge computing; client selection;
D O I
10.1109/ACCESS.2021.3056919
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Federated Learning (FL) has recently attracted considerable attention in internet of things, due to its capability of enabling mobile clients to collaboratively learn a global prediction model without sharing their privacy-sensitive data to the server. Despite its great potential, a main challenge of FL is that the training data are usually non-Independent, Identically Distributed (non-IID) on the clients, which may bring the biases in the model training and cause possible accuracy degradation. To address this issue, this paper aims to propose a novel FL algorithm to alleviate the accuracy degradation caused by non-IID data at clients. Firstly, we observe that the clients with different degrees of non-IID data present heterogeneous weight divergence with the clients owning IID data. Inspired by this, we utilize weight divergence to recognize the non-IID degrees of clients. Then, we propose an efficient FL algorithm, named CSFedAvg, in which the clients with lower degree of non-IID data will be chosen to train the models with higher frequency. Finally, we conduct simulations using publicly-available datasets to train deep neural networks. Simulation results show that the proposed FL algorithm improves the training performance compared with existing FL protocol.
引用
收藏
页码:24462 / 24474
页数:13
相关论文
共 50 条
  • [1] FedPKR: Federated Learning With Non-IID Data via Periodic Knowledge Review in Edge Computing
    Wang, Jinbo
    Wang, Ruijin
    Xu, Guangquan
    He, Donglin
    Pei, Xikai
    Zhang, Fengli
    Gan, Jie
    IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, 2024, 9 (06): : 902 - 912
  • [2] Overcoming Noisy Labels and Non-IID Data in Edge Federated Learning
    Xu, Yang
    Liao, Yunming
    Wang, Lun
    Xu, Hongli
    Jiang, Zhida
    Zhang, Wuyang
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2024, 23 (12) : 11406 - 11421
  • [3] Node Selection Toward Faster Convergence for Federated Learning on Non-IID Data
    Wu, Hongda
    Wang, Ping
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2022, 9 (05): : 3099 - 3111
  • [4] Long-Term Client Selection for Federated Learning With Non-IID Data: A Truthful Auction Approach
    Tan, Jinghong
    Liu, Zhian
    Guo, Kun
    Zhao, Mingxiong
    IEEE INTERNET OF THINGS JOURNAL, 2025, 12 (05): : 4953 - 4970
  • [5] Federated Learning With Non-IID Data: A Survey
    Lu, Zili
    Pan, Heng
    Dai, Yueyue
    Si, Xueming
    Zhang, Yan
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (11): : 19188 - 19209
  • [6] Federated Transfer Learning With Client Selection for Intrusion Detection in Mobile Edge Computing
    Cheng, Yanyu
    Lu, Jianyuan
    Niyato, Dusit
    Lyu, Biao
    Kang, Jiawen
    Zhu, Shunmin
    IEEE COMMUNICATIONS LETTERS, 2022, 26 (03) : 552 - 556
  • [7] Adaptive Federated Learning on Non-IID Data With Resource Constraint
    Zhang, Jie
    Guo, Song
    Qu, Zhihao
    Zeng, Deze
    Zhan, Yufeng
    Liu, Qifeng
    Akerkar, Rajendra
    IEEE TRANSACTIONS ON COMPUTERS, 2022, 71 (07) : 1655 - 1667
  • [8] Federated Learning With Non-IID Data in Wireless Networks
    Zhao, Zhongyuan
    Feng, Chenyuan
    Hong, Wei
    Jiang, Jiamo
    Jia, Chao
    Quek, Tony Q. S.
    Peng, Mugen
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2022, 21 (03) : 1927 - 1942
  • [9] Federated Learning With Taskonomy for Non-IID Data
    Jamali-Rad, Hadi
    Abdizadeh, Mohammad
    Singh, Anuj
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (11) : 8719 - 8730
  • [10] FedPD: A Federated Learning Framework With Adaptivity to Non-IID Data
    Zhang, Xinwei
    Hong, Mingyi
    Dhople, Sairaj
    Yin, Wotao
    Liu, Yang
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2021, 69 (69) : 6055 - 6070