Client Selection for Federated Learning With Non-IID Data in Mobile Edge Computing

被引:127
|
作者
Zhang, Wenyu [1 ]
Wang, Xiumin [1 ]
Zhou, Pan [2 ]
Wu, Weiwei [3 ]
Zhang, Xinglin [1 ]
机构
[1] South China Univ Technol, Sch Comp Sci & Engn, Guangzhou 510006, Peoples R China
[2] Huazhong Univ Sci & Technol, Hubei Engn Res Ctr Big Data Secur, Sch Cyber Sci & Engn, Wuhan 430074, Peoples R China
[3] Southeast Univ, Sch Comp Sci & Engn, Nanjing 210096, Peoples R China
基金
中国国家自然科学基金;
关键词
Data models; Training; Servers; Computational modeling; Internet of Things; Distributed databases; Degradation; Federated learning; mobile edge computing; client selection;
D O I
10.1109/ACCESS.2021.3056919
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Federated Learning (FL) has recently attracted considerable attention in internet of things, due to its capability of enabling mobile clients to collaboratively learn a global prediction model without sharing their privacy-sensitive data to the server. Despite its great potential, a main challenge of FL is that the training data are usually non-Independent, Identically Distributed (non-IID) on the clients, which may bring the biases in the model training and cause possible accuracy degradation. To address this issue, this paper aims to propose a novel FL algorithm to alleviate the accuracy degradation caused by non-IID data at clients. Firstly, we observe that the clients with different degrees of non-IID data present heterogeneous weight divergence with the clients owning IID data. Inspired by this, we utilize weight divergence to recognize the non-IID degrees of clients. Then, we propose an efficient FL algorithm, named CSFedAvg, in which the clients with lower degree of non-IID data will be chosen to train the models with higher frequency. Finally, we conduct simulations using publicly-available datasets to train deep neural networks. Simulation results show that the proposed FL algorithm improves the training performance compared with existing FL protocol.
引用
收藏
页码:24462 / 24474
页数:13
相关论文
共 50 条
  • [1] CCSF: Clustered Client Selection Framework for Federated Learning in non-IID Data
    Mohamed, Aissa H.
    de Souza, Allan M.
    da Costa, Joahannes B. D.
    Villas, Leandro A.
    Dos Reis, Julio C.
    16TH IEEE/ACM INTERNATIONAL CONFERENCE ON UTILITY AND CLOUD COMPUTING, UCC 2023, 2023,
  • [2] Just Enough Disclosure (JED): Taking Advantage of Non-IID Data for Federated Learning in Mobile Edge Computing
    Deng, Jing
    Wang, En
    2024 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS WORKSHOPS, ICC WORKSHOPS 2024, 2024, : 656 - 660
  • [3] FedPKR: Federated Learning With Non-IID Data via Periodic Knowledge Review in Edge Computing
    Wang, Jinbo
    Wang, Ruijin
    Xu, Guangquan
    He, Donglin
    Pei, Xikai
    Zhang, Fengli
    Gan, Jie
    IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, 2024, 9 (06): : 902 - 912
  • [4] Joint Client Scheduling and Wireless Resource Allocation for Heterogeneous Federated Edge Learning With Non-IID Data
    Yin, Tong
    Li, Lixin
    Lin, Wensheng
    Ni, Tao
    Liu, Ying
    Xu, Haitao
    Han, Zhu
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2024, 73 (04) : 5742 - 5754
  • [5] Overcoming Noisy Labels and Non-IID Data in Edge Federated Learning
    Xu, Yang
    Liao, Yunming
    Wang, Lun
    Xu, Hongli
    Jiang, Zhida
    Zhang, Wuyang
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2024, 23 (12) : 11406 - 11421
  • [6] Stabilizing and improving federated learning with highly non-iid data and client dropout
    Xu, Jian
    Yang, Meilin
    Ding, Wenbo
    Huang, Shao-Lun
    APPLIED INTELLIGENCE, 2025, 55 (03)
  • [7] Asynchronous Online Federated Learning for Edge Devices with Non-IID Data
    Chen, Yujing
    Ning, Yue
    Slawski, Martin
    Rangwala, Huzefa
    2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2020, : 15 - 24
  • [8] Federated learning on non-IID data: A survey
    Zhu, Hangyu
    Xu, Jinjin
    Liu, Shiqing
    Jin, Yaochu
    NEUROCOMPUTING, 2021, 465 : 371 - 390
  • [9] Long-Term Client Selection for Federated Learning With Non-IID Data: A Truthful Auction Approach
    Tan, Jinghong
    Liu, Zhian
    Guo, Kun
    Zhao, Mingxiong
    IEEE INTERNET OF THINGS JOURNAL, 2025, 12 (05): : 4953 - 4970
  • [10] FedNSE: Optimal Node Selection for Federated Learning with Non-IID Data
    Bansal, Sourav
    Bansal, Manav
    Verma, Rohit
    Shorey, Rajeev
    Saran, Huzur
    2023 15TH INTERNATIONAL CONFERENCE ON COMMUNICATION SYSTEMS & NETWORKS, COMSNETS, 2023,