High-Performance Sodium-Ion Capacitor Constructed by Well-Matched Dual-Carbon Electrodes from a Single Biomass

被引:61
作者
Liu, Haolin [1 ]
Liu, Xiao [1 ]
Wang, Huanlei [1 ]
Zheng, Yulong [1 ]
Zhang, Hao [1 ]
Shi, Jing [1 ]
Liu, Wei [1 ]
Huang, Minghua [1 ]
Kan, Jinglin [1 ]
Zhao, Xiaochen [2 ]
Li, Dong [1 ]
机构
[1] Ocean Univ China, Sch Mat Sci & Engn, 238 Songling Rd, Qingdao 266100, Shandong, Peoples R China
[2] Qingdao Univ Sci & Technol, Coll Marine Sci & Biol Engn, 53 Zhengzhou Rd, Qingdao 266042, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Sodium-ion capacitors; Biomass; Hard carbon; Porous carbon; Capacitive storage; HIERARCHICAL POROUS CARBONS; ADVANCED ANODE MATERIAL; HARD CARBON; HIGH-ENERGY; STORAGE MECHANISM; DOPED GRAPHENE; LITHIUM; NANOSHEETS; POWER; SUPERCAPACITORS;
D O I
10.1021/acssuschemeng.9b01370
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The concept of combining the advantages of batteries and supercapacitors to obtain hybrid capacitors with both high energy and high power is considered to be promising. However, development of hybrid capacitors is still hindered by the matching problem between the cathode and the anode. Here, we report a Na-ion capacitor with well-matched carbon anode and cathode originated from the same precursor: garlic, which is a green and abundantly presented biomass in the world. The hard carbon (GDHC) anode based on ion intercalation is prepared by simple pyrolysis at high temperature, which demonstrates a high reversible capacity of 260 mA h g(-1) at 0.05 A g(-1) with an intercalating capacity of 148 mA h g(-1), a high initial Coulombic efficiency of 50.7%, and an excellent cycling stability of 80% after 10 000 cycles at 2 A The porous carbon (GDPC) cathode based on ion adsorption is prepared by a simple carbonization activation method. GDPC with developed porous architecture and high surface area (1682 m(2) g(-1)) provides a superior capacity of 152 mA h g(-1) at 0.05 A(-1). By tuning the electrode potential for the balancing of anode and cathode, the assembled sodium-ion capacitor displays highly favorable performance, i.e., 156 and 31 W h kg(-1) at 355 and 38910 W kg(-1), and retains 73% of its initial capacity after 10 000 cycles at 1.5-4.2 V. We firmly believe that this work provides a practical strategy for designing advanced sodium-ion capacitors with both the anode and the cathode prepared by a facile process.
引用
收藏
页码:12188 / 12199
页数:23
相关论文
共 50 条
  • [41] Design of high-performance antimony/MXene hybrid electrodes for sodium-ion batteries
    Arnold, Stefanie
    Gentile, Antonio
    Li, Yunjie
    Wang, Qingsong
    Marchionna, Stefano
    Ruffo, Riccardo
    Presser, Volker
    JOURNAL OF MATERIALS CHEMISTRY A, 2022, 10 (19) : 10569 - 10585
  • [42] High-Performance Sodium Ion Capacitor Based on MoO2@rGO Nanocomposite and Goat Hair Derived Carbon Electrodes
    Ramakrishnan, Kiruthiga
    Nithya, Chandrasekaran
    Karvembu, Ramasamy
    ACS APPLIED ENERGY MATERIALS, 2018, 1 (02): : 841 - 850
  • [43] Sodium Carboxymethylcellulose Derived Oxygen-Rich Porous Carbon Anodes for High-Performance Lithium/Sodium-Ion Batteries
    Zhang, Yongzhi
    Meng, Yan
    Wang, Yujue
    Chen, Li
    Guo, Yong
    Xiao, Dan
    CHEMELECTROCHEM, 2017, 4 (03): : 500 - 507
  • [44] A Recyclable Polyimide Derived Hard Carbon as a High-Performance Negative Electrode Material for Sodium-Ion Batteries
    Fang, Qian
    Wang, Xiaojie
    Chen, Peiting
    Ruan, Dianbo
    Qiao, Zhijun
    CHEMISTRYSELECT, 2024, 9 (35):
  • [45] Lithium-Pretreated Hard Carbon as High-Performance Sodium-Ion Battery Anodes
    Xiao, Biwei
    Soto, Fernando A.
    Gu, Meng
    Han, Kee Sung
    Song, Junhua
    Wang, Hui
    Engelhard, Mark H.
    Murugesan, Vijayakumar
    Mueller, Karl T.
    Reed, David
    Sprenkle, Vincent L.
    Balbuena, Perla B.
    Li, Xiaolin
    ADVANCED ENERGY MATERIALS, 2018, 8 (24)
  • [46] Ultrasmall Sn Nanoparticles Embedded in Carbon as High-Performance Anode for Sodium-Ion Batteries
    Liu, Yongchang
    Zhang, Ning
    Jiao, Lifang
    Tao, Zhanliang
    Chen, Jun
    ADVANCED FUNCTIONAL MATERIALS, 2015, 25 (02) : 214 - 220
  • [47] Manipulating micropore structure of hard carbon as high-performance anode for Sodium-Ion Batteries
    Pan, Yihao
    Ji, Bingyang
    Wang, Lexin
    Sun, Yiran
    Li, Longchen
    Wu, Xiaozhong
    Zhou, Pengfei
    ELECTROCHIMICA ACTA, 2024, 506
  • [48] An Advanced MoS2/Carbon Anode for High-Performance Sodium-Ion Batteries
    Wang, Jingjing
    Luo, Chao
    Gao, Tao
    Langrock, Alex
    Mignerey, Alice C.
    Wang, Chunsheng
    SMALL, 2015, 11 (04) : 473 - 481
  • [49] Biomass-derived activated carbon materials with plentiful heteroatoms for high-performance electrochemical capacitor electrodes
    Zhou, Xiangyang
    Li, Hongcheng
    Yang, Juan
    JOURNAL OF ENERGY CHEMISTRY, 2016, 25 (01) : 35 - 40
  • [50] Regulating the Pore Structure of Activated Carbon by Pitch for High-Performance Sodium-Ion Storage
    Tian, Yan-Ru
    Yi, Zong-Lin
    Su, Fang-Yuan
    Xie, Li-Jing
    Zhang, Xu-Feng
    Li, Xiong-Fei
    Cheng, Jia-Yao
    Chen, Jing-Peng
    Chen, Cheng-Meng
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (14) : 17553 - 17562