High-Performance Sodium-Ion Capacitor Constructed by Well-Matched Dual-Carbon Electrodes from a Single Biomass

被引:62
作者
Liu, Haolin [1 ]
Liu, Xiao [1 ]
Wang, Huanlei [1 ]
Zheng, Yulong [1 ]
Zhang, Hao [1 ]
Shi, Jing [1 ]
Liu, Wei [1 ]
Huang, Minghua [1 ]
Kan, Jinglin [1 ]
Zhao, Xiaochen [2 ]
Li, Dong [1 ]
机构
[1] Ocean Univ China, Sch Mat Sci & Engn, 238 Songling Rd, Qingdao 266100, Shandong, Peoples R China
[2] Qingdao Univ Sci & Technol, Coll Marine Sci & Biol Engn, 53 Zhengzhou Rd, Qingdao 266042, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Sodium-ion capacitors; Biomass; Hard carbon; Porous carbon; Capacitive storage; HIERARCHICAL POROUS CARBONS; ADVANCED ANODE MATERIAL; HARD CARBON; HIGH-ENERGY; STORAGE MECHANISM; DOPED GRAPHENE; LITHIUM; NANOSHEETS; POWER; SUPERCAPACITORS;
D O I
10.1021/acssuschemeng.9b01370
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The concept of combining the advantages of batteries and supercapacitors to obtain hybrid capacitors with both high energy and high power is considered to be promising. However, development of hybrid capacitors is still hindered by the matching problem between the cathode and the anode. Here, we report a Na-ion capacitor with well-matched carbon anode and cathode originated from the same precursor: garlic, which is a green and abundantly presented biomass in the world. The hard carbon (GDHC) anode based on ion intercalation is prepared by simple pyrolysis at high temperature, which demonstrates a high reversible capacity of 260 mA h g(-1) at 0.05 A g(-1) with an intercalating capacity of 148 mA h g(-1), a high initial Coulombic efficiency of 50.7%, and an excellent cycling stability of 80% after 10 000 cycles at 2 A The porous carbon (GDPC) cathode based on ion adsorption is prepared by a simple carbonization activation method. GDPC with developed porous architecture and high surface area (1682 m(2) g(-1)) provides a superior capacity of 152 mA h g(-1) at 0.05 A(-1). By tuning the electrode potential for the balancing of anode and cathode, the assembled sodium-ion capacitor displays highly favorable performance, i.e., 156 and 31 W h kg(-1) at 355 and 38910 W kg(-1), and retains 73% of its initial capacity after 10 000 cycles at 1.5-4.2 V. We firmly believe that this work provides a practical strategy for designing advanced sodium-ion capacitors with both the anode and the cathode prepared by a facile process.
引用
收藏
页码:12188 / 12199
页数:23
相关论文
共 77 条
[1]   Revealing sodium ion storage mechanism in hard carbon [J].
Alvin, Stevanus ;
Yoon, Dohyeon ;
Chandra, Christian ;
Cahyadi, Handi Setiadi ;
Park, Jae-Ho ;
Chang, Wonyoung ;
Chung, Kyung Yoon ;
Kim, Jaehoon .
CARBON, 2019, 145 :67-81
[2]   High performance sodium-ion hybrid capacitor based on Na2Ti2O4(OH)2 nanostructures [J].
Babu, Binson ;
Shaijumon, M. M. .
JOURNAL OF POWER SOURCES, 2017, 353 :85-94
[3]   Elucidation of the Sodium-Storage Mechanism in Hard Carbons [J].
Bai, Panxing ;
He, Yongwu ;
Zou, Xiaoxi ;
Zhao, Xinxin ;
Xiong, Peixun ;
Xu, Yunhua .
ADVANCED ENERGY MATERIALS, 2018, 8 (15)
[4]   Metal-organic framework-derived porous shuttle-like vanadium oxides for sodium-ion battery application [J].
Cai, Yangsheng ;
Fang, Guozhao ;
Zhou, Jiang ;
Liu, Sainan ;
Luo, Zhigao ;
Pan, Anqiang ;
Cao, Guozhong ;
Liang, Shuquan .
NANO RESEARCH, 2018, 11 (01) :449-463
[5]   Silicon oxycarbide produced from silicone oil for high-performance anode material in sodium ion batteries [J].
Chandra, Christian ;
Kim, Jaehoon .
CHEMICAL ENGINEERING JOURNAL, 2018, 338 :126-136
[6]   Array of nanosheets render ultrafast and high-capacity Na-ion storage by tunable pseudocapacitance [J].
Chao, Dongliang ;
Zhu, Changrong ;
Yang, Peihua ;
Xia, Xinhui ;
Liu, Jilei ;
Wang, Jin ;
Fan, Xiaofeng ;
Savilov, Serguei V. ;
Lin, Jianyi ;
Fan, Hong Jin ;
Shen, Ze Xiang .
NATURE COMMUNICATIONS, 2016, 7
[7]   Disordered, Large Interlayer Spacing, and Oxygen-Rich Carbon Nanosheets for Potassium Ion Hybrid Capacitor [J].
Chen, Jiangtao ;
Yang, Bingjun ;
Hou, Hongjun ;
Li, Hongxia ;
Liu, Li ;
Zhang, Li ;
Yan, Xingbin .
ADVANCED ENERGY MATERIALS, 2019, 9 (19)
[8]   Candle soot: onion-like carbon, an advanced anode material for a potassium-ion hybrid capacitor [J].
Chen, Jiangtao ;
Yang, Bingjun ;
Li, Hongxia ;
Ma, Pengjun ;
Lang, Junwei ;
Yan, Xingbin .
JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (15) :9247-9252
[9]   Coordination of Surface-Induced Reaction and Intercalation: Toward a High-Performance Carbon Anode for Sodium-Ion Batteries [J].
Chen, Weimin ;
Chen, Chaoji ;
Xiong, Xiaoqin ;
Hu, Pei ;
Hao, Zhangxiang ;
Huang, Yunhui .
ADVANCED SCIENCE, 2017, 4 (06)
[10]   Tuning the morphology and structure of nanocarbons with activating agents for ultrafast ionic liquid-based supercapacitors [J].
Cui, Yongpeng ;
Wang, Huanlei ;
Mao, Nan ;
Yu, Wenhua ;
Shi, Jing ;
Huang, Minghua ;
Liu, Wei ;
Chen, Shougang ;
Wang, Xin .
JOURNAL OF POWER SOURCES, 2017, 361 :182-194