The Arabidopsis thaliana Poly(ADP-Ribose) Polymerases 1 and 2 Modify DNA by ADP-Ribosylating Terminal Phosphate Residues

被引:11
|
作者
Taipakova, Sabira [1 ]
Kuanbay, Aigerim [1 ,2 ]
Saint-Pierre, Christine [3 ]
Gasparutto, Didier [3 ]
Baiken, Yeldar [4 ,5 ]
Groisman, Regina [2 ]
Ishchenko, Alexander A. [2 ]
Saparbaev, Murat [1 ,2 ]
Bissenbaev, Amangeldy K. [1 ]
机构
[1] Al Farabi Kazakh Natl Univ, Dept Mol Biol & Genet, Fac Biol & Biotechnol, Alma Ata, Kazakhstan
[2] Univ Paris Saclay, Grp Mech DNA Repair & Carcinogenesis, Equipe Labellisee LIGUE 2016, CNRS,UMR9019, Villejuif, France
[3] Univ Grenoble Alpes, CEA, CNRS, IRIG,SyMMES,UMR5819,CREAB, Grenoble, France
[4] Nazarbayev Univ, Natl Lab Astana, Nur Sultan, Kazakhstan
[5] Nazarbayev Univ, Sch Engn & Digital Sci, Nur Sultan, Kazakhstan
来源
FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY | 2020年 / 8卷
关键词
plant DNA repair; Arabidopsis thaliana; DNA strand break; nicotinamide adenine dinucleotide (NAD(+)); poly(ADP-ribose) polymerase (PARP); ADP-ribosylation; PROTEIN; MECHANISM; PARP-1; FAMILY; GENES;
D O I
10.3389/fcell.2020.606596
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Proteins from the poly(ADP-ribose) polymerase (PARP) family, such as PARP1 and PARP2, use NAD(+) as a substrate to catalyze the synthesis of polymeric chains consisting of ADP-ribose units covalently attached to an acceptor molecule. PARP1 and PARP2 are viewed as DNA damage sensors that, upon binding to strand breaks, poly(ADP-ribosyl)ate themselves and nuclear acceptor proteins. The flowering plant Arabidopsis thaliana contains three genes encoding homologs of mammalian PARPs: atPARP1, atPARP2, and atPARP3. Both atPARP1 and atPARP2 contain poly(ADP-ribosyl)ating activity; however, it is unknown whether they could covalently modify DNA by ADP-ribosylating the strand break termini. Here, we report that similar to their mammalian counterparts, the plant atPARP1 and atPARP2 proteins ADP-ribosylate 5 '-terminal phosphate residues in duplex DNA oligonucleotides and plasmid containing at least two closely spaced DNA strand breaks. AtPARP1 preferentially catalyzes covalent attachment of ADP-ribose units to the ends of recessed DNA duplexes containing 5 '-phosphate, whereas atPARP2 preferentially ADP-ribosylates the nicked and gapped DNA duplexes containing the terminal 5 '-phosphate. Similar to their mammalian counterparts, the plant PARP-catalyzed DNA ADP-ribosylation is particularly sensitive to the distance that separates two strand breaks in the same DNA molecule, 1.5 and 1 or 2 turns of helix for atPARP1 and atPARP2, respectively. PAR glycohydrolase (PARG) restored native DNA structure by hydrolyzing the PAR-DNA adducts generated by atPARPs. Biochemical and mass spectrometry analyses of the PAR-DNA adducts showed that atPARPs utilize phosphorylated DNA termini as an alternative to protein acceptor residues to catalyze PAR chain synthesis via phosphodiester bond formation between C1 ' of ADP-ribose and a phosphate residue of the terminal nucleotide in DNA fragment. Taken together, these data establish the presence of a new type of DNA-modifying activity in Arabidopsis PARPs, suggesting a possible role of DNA ADP-ribosylation in DNA damage signaling and repair of terrestrial plants.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Conserved Structural Motif for Recognizing Nicotinamide Adenine Dinucleotide in Poly(ADP-ribose) Polymerases and ADP-Ribosylating Toxins: Implications for Structure-Based Drug Design
    Lee, Yu-Ming
    Babu, C. Satheesan
    Chen, Yao Chi
    Milcic, Milos
    Qu, Yuanyuan
    Lim, Carmay
    JOURNAL OF MEDICINAL CHEMISTRY, 2010, 53 (10) : 4038 - 4049
  • [2] Poly(ADP-ribose) polymerases covalently modify strand break termini in DNA fragments in vitro
    Talhaoui, Ibtissam
    Lebedeva, Natalia A.
    Zarkovic, Gabriella
    Saint-Pierre, Christine
    Kutuzov, Mikhail M.
    Sukhanova, Maria V.
    Matkarimov, Bakhyt T.
    Gasparutto, Didier
    Saparbaev, Murat K.
    Lavrik, Olga I.
    Ishchenko, Alexander A.
    NUCLEIC ACIDS RESEARCH, 2016, 44 (19) : 9279 - 9295
  • [3] RNA Regulation by Poly(ADP-Ribose) Polymerases
    Bock, Florian J.
    Todorova, Tanya T.
    Chang, Paul
    MOLECULAR CELL, 2015, 58 (06) : 959 - 969
  • [4] Metabolic roles of poly(ADP-ribose) polymerases
    Vida, Andras
    Marton, Judit
    Miko, Edit
    Bai, Peter
    SEMINARS IN CELL & DEVELOPMENTAL BIOLOGY, 2017, 63 : 135 - 143
  • [5] Poly(ADP-Ribose) Polymerases in Aging - Friend or Foe?
    Vida, Andras
    Abdul-Rahman, Omar
    Miko, Edit
    Brunyanszki, Attila
    Bai, Peter
    CURRENT PROTEIN & PEPTIDE SCIENCE, 2016, 17 (07) : 705 - 712
  • [6] Biology of Poly(ADP-Ribose) Polymerases: The Factotums of Cell Maintenance
    Bai, Peter
    MOLECULAR CELL, 2015, 58 (06) : 947 - 958
  • [7] CHARACTERIZATION OF AN ARABIDOPSIS-THALIANA CDNA HOMOLOG TO ANIMAL POLY(ADP-RIBOSE) POLYMERASE
    LEPINIEC, L
    BABIYCHUK, E
    KUSHNIR, S
    VANMONTAGU, M
    INZE, D
    FEBS LETTERS, 1995, 364 (02) : 103 - 108
  • [8] Poly(ADP-Ribose) Polymerases 1 and 2: Classical Functions and Interaction with New Histone Poly(ADP-Ribosyl)ation Factor HPF1
    Kurgina, T. A.
    Lavrik, O. I.
    MOLECULAR BIOLOGY, 2023, 57 (02) : 245 - 257
  • [9] Host poly(ADP-ribose) polymerases (PARPs) in acute and chronic bacterial infections
    Miettinen, Moona
    Vedantham, Madhukar
    Pulliainen, Arto T.
    MICROBES AND INFECTION, 2019, 21 (10) : 423 - 431
  • [10] Poly(ADP-Ribose) Polymerases in Plants and Their Human Counterparts: Parallels and Peculiarities
    Rissel, Dagmar
    Peiter, Edgar
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2019, 20 (07)