Comparison of Interval Analysis and Standard Statistical Methods for Estimating Experimental Data with Uncertainty

被引:0
|
作者
Kumkov, S. I. [1 ,2 ]
Jaulin, L. [3 ]
机构
[1] Russian Acad Sci, Ural Branch, Krasovskii Inst Math & Mech, Ekaterinburg, Russia
[2] Ural Fed Univ, Ekaterinburg, Russia
[3] ENSTA Bretagne, Brest, France
关键词
interval analysis; statistical methods; noisy data; uncertainty conditions; process parameters; estimation;
D O I
10.1007/s11018-019-01593-2
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Interval analysis procedures are used to estimate the parameters of an experimental chemical process under conditions of noise and uncertainty in the probabilistic characteristics of the measurement errors for a small measurement sample. Interval analysis makes it possible to describe exactly the set of admissible values of the estimated parameters needed for correct organization of the technological process through a correct choice of its parameters. Approximate estimates of the parameters are obtained by formal application of a statistical approach and it is shown that in this case the standard statistical approach yields essentially meaningless estimates for the parameters of the process studied here.
引用
收藏
页码:105 / 110
页数:6
相关论文
共 38 条
  • [1] Comparison of Interval Analysis and Standard Statistical Methods for Estimating Experimental Data with Uncertainty
    S. I. Kumkov
    L. Jaulin
    Measurement Techniques, 2019, 62 : 105 - 110
  • [2] Criteria for Analysis and Comparison of Experimental Data under Conditions of Uncertainty
    Kumkov, Sergey, I
    Kataeva, Zinaida, V
    Shilovskikh, Oleg, V
    INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2019, 2020, 2293
  • [3] ESTIMATING THE STATISTICAL PARAMETERS FOR DATA SAMPLES IN AN EXPERIMENTAL INSTALLATION
    Clinciu, Mihaela Rodica
    PROCEEDINGS OF THE 13TH INTERNATIONAL CONFERENCE MODERN TECHNOLOGIES, QUALITY AND INNOVATION: MODTECH 2009 - NEW FACE OF TMCR, 2009, : 167 - 170
  • [4] Uncertainty analysis of microresonator using classical and interval methods
    Vasuki, B.
    Umapathy, M.
    Uma, G.
    Shanmugavalli, M.
    Meenachisundaram, S.
    NANOSENSORS, MICROSENSORS, AND BIOSENSORS AND SYSTEMS 2007, 2007, 6528
  • [5] Statistical methods for metagenomics data analysis
    Lee, Chanyoung
    Lee, Seungyeoun
    Park, Taesung
    INTERNATIONAL JOURNAL OF DATA MINING AND BIOINFORMATICS, 2017, 19 (04) : 366 - 385
  • [6] A comparison of statistical methods for fitting population models to data
    Wade, PR
    MARINE MAMMAL SURVEY AND ASSESSMENT METHODS, 1999, : 249 - 270
  • [7] Statistical Methods for Comparison of Data Sets of Construction Methods and Building Evaluation
    Niroumand, Hamed
    Zain, M. F. M.
    Jamil, Maslina
    2ND CYPRUS INTERNATIONAL CONFERENCE ON EDUCATIONAL RESEARCH (CY-ICER 2013), 2013, 89 : 218 - 221
  • [8] Analysis of data with interval uncertainty: application of a combined sample consistency measure
    A. N. Bazhenov
    S. I. Zhilin
    A. Yu. Telnova
    Measurement Techniques, 2024, 66 : 827 - 838
  • [9] Analysis of data with interval uncertainty: application of a combined sample consistency measure
    Bazhenov, A. N.
    Zhilin, S. I.
    Telnova, A. Yu.
    MEASUREMENT TECHNIQUES, 2024, 66 (11) : 827 - 838
  • [10] Comparison of different statistical methods for evaluation of proficiency test data
    Pedro Rosario
    José Luis Martínez
    José Miguel Silván
    Accreditation and Quality Assurance, 2008, 13 : 493 - 499